
 1 

Mutational Effects and Population Dynamics during Viral Adaptation Challenge 

Current Models 

 

Craig R. Miller,*,§ Paul Joyce,* and Holly A. Wichman§ 

 

*  Department of Mathematics and Department of Statistics, University of Idaho 

§ Department of Biological Sciences, University of Idaho

 Genetics: Published Articles Ahead of Print, published on November 1, 2010 as 10.1534/genetics.110.121400



 2 

Running head: Testing Models of Adaptation 

 

Keywords: adaptation, fitness landscape, beneficial mutations, extreme value theory, 

bacteriophage, experimental evolution 

 

Corresponding Author: 

Craig R. Miller 

Department of Mathematics 

300 Brink Hall 

PO Box 441103 

Moscow, ID USA 83844-1103 

email: crmiller@uidaho.edu 

fax: (208) 885-5843 

phone: (208) 691-2469 

 

 

Appropriate Section:  Population and Evolutionary Genetics 

 

Article Type:  Research Article 



 3 

ABSTRACT 

Adaptation in haploid organisms has been extensively modeled but little tested.  Using a 

microvirid bacteriophage (ID11), we conducted serial passage adaptations at two 

bottleneck sizes (104 and 106), followed by fitness assays and whole-genome sequencing 

of 631 individual isolates.  Extensive genetic variation was observed including 22 

beneficial, several nearly neutral and several deleterious mutations.  In the three large 

bottleneck lines, up to eight different haplotypes were observed in samples of 23 

genomes from the final time-point.  The small bottleneck lines were less diverse.  The 

small bottleneck lines appeared to operate near the transition between isolated selective 

sweeps and conditions of complex dynamics (e.g., clonal interference).  The large 

bottleneck lines exhibited extensive interference and less stochasticity, with multiple 

beneficial mutations establishing on a variety of backgrounds.  Several leapfrog events 

occurred.  The distribution of first-step adaptive mutations differed significantly from the 

distribution of second-steps, and a surprisingly large number of second-step beneficial 

mutations were observed on a highly fit first-step background.  Furthermore, few first-

step mutations appeared as second-steps and second-steps had substantially smaller 

selection coefficients.  Collectively, the results indicate that the fitness landscape falls 

between the extremes of smooth and fully uncorrelated, violating the assumptions of 

many current mutational landscape models.  
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INTRODUCTION 

The question of how populations adapt to changes in their environment has long 

been a central one in evolutionary biology.  While FISHER (1930) and WRIGHT (1932) 

proposed the foundational models of adaptation, the discoveries linking DNA sequence to 

amino acid sequence to functional protein changed the way that biologists conceived of 

adaptation.  In the mutational landscape framework as proposed by MAYNARD SMITH 

(1970) and further developed especially by GILLESPIE (1984; 1991) and ORR (2000; 

2002; 2005), organisms occupy points in discrete sequence space, where sequences are 

either DNA or protein.  Spatially adjacent sequences differ from each other by one 

mutational change.  Each sequence has an associated fitness yielding a fitness surface.  

An altered environment changes the fitness surface and shifts the wildtype further from 

the peak.  In a nonrecombinant haploid system, such as will be our focus here, mutations 

on the parental background(s) allow the population to explore neighboring regions of 

sequence space and thereby climb a fitness peak.  

A conceptual map showing how the assumptions of many of the mutational 

landscape models relate one to another is presented in Figure 1.  Our objective here is to 

examine several of these assumptions using real data from experimental evolution.  We 

caution from the outset, however, that neither our survey of models nor our list of 

important modeling questions is exhaustive.  We do not, for example, address extensions 

of Fisher’s geometrical model, the effect of deleterious mutations, recombination or a 

continually changing environment to the adaptive process, and we generally omit models 

that delve into these realms.  
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A central issue in all models of adaptation involves how frequently beneficial 

mutations arise in the population.  When rare, the population will be fixed for one 

background for an extended time, ‘waiting’ for a beneficial mutation to arise.  Upon 

arising, it sweeps to fixation rapidly (relative to the waiting time).  We refer to this 

situation as selective sweep dynamics, and the conditions that produce it are known as 

strong selection, weak mutation, or SSWM (GILLESPIE 1984; GILLESPIE 1991).  Selective 

sweep dynamics depend on the probability of fixation of each of the possible beneficial 

mutations.  Some models have assumed that the population fixes a random beneficial 

mutation (e.g., the NK models in Figure 1), but GILLESPIE (1984) showed that mutations 

should be chosen with probability equal to their selection coefficient divided by the sum 

of all beneficial selection coefficients (Figure 1, bottom left).  The weight dictates the 

probability that a mutation survives drift.  This assumes, however, that all mutations are 

equally likely to arise.  ROKYTA et al. (2005) showed that data from a G4-like DNA virus 

do not follow this move rule when naively applied, but that a good fit is obtained once 

differences in mutation rates (i.e., transitions vs. transversions) are incorporated. 

When mutations are not rare, for example in large populations, a beneficial 

mutation that is increasing in frequency will not fix before one or more secondary 

beneficial mutations arise and begin competing with it.  We refer to this as interference 

dynamics.  Different models make differing assumptions about the backgrounds upon 

which the interfering mutations arise (Figure 1, bottom right).  The clonal interference 

model of GERRISH and LENSKI (1998) assumes that secondary beneficial mutations occur 

only on what was originally the fixed (i.e., wildtype) background and that no second-

steps will arise before one of the first-steps fix.  By contrast, the multiple mutations 
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model of DESAI and FISHER (2007; BRUNET et al. 2008; DESAI et al. 2007) assumes that 

secondary beneficial mutations may arise on any background.  Since all mutations are 

assumed to have the same fixed effect, beneficial mutations on backgrounds of the same 

fitness do not compete with each other.  Thus the mutations most influential for 

adaptation are those occurring on the most-fit background. PARK and KRUG (2007) 

develop a full interference model where beneficial mutations may occur on any 

background present in the population but do compete with each other.  

Models general enough to encompass both selective sweep and interference 

dynamics include those of JAIN and KRUG (2007) and WAHL and KRAKAUER (2000).  

These models also allow for dynamics at higher mutation incidence where all one-step 

mutations are produced in the population in one generation, and double mutants, triple 

mutants, etc., may also arise.  This generally yields more deterministic dynamics as the 

population searches sequence space more systematically (QUER et al. 1996). 

Another important component of modeling adaptation is the fitness landscape’s 

surface.  At one theoretical extreme lies a smooth, additive, single-peak landscape and at 

the other, a highly rugged one with many local peaks.  Additive landscapes occur when 

there is no epistasis such that a fixed number of beneficial mutations are available and 

each has a fixed effect on fitness irrespective of background.  (Note that this is not the 

same as a smooth landscape in Fisher’s geometric model; there it is phenotype and not 

genotype that maps smoothly onto fitness.)  Adaptation is then simply the process of 

accumulating all the beneficial mutations. With the exception of JAIN and KRUG (2007) 

and WAHL and KRAKAUER (2000), models that allow interference dynamics assume 

fitness landscapes are additive (Figure 1, right side).  These interference-on-additive-
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landscape models also generally assume that the number of beneficial mutations is large, 

KIM and ORR (2005) being an exception.  The adaptive process consequently extends a 

long time, achieves a steady-state property and makes it meaningful to focus on the rate 

of evolution.  

At the opposite extreme are maximally rugged landscapes.  These assume that the 

fitness at every sequence is an independent draw from a single probability distribution.  

There is no correlation in fitness for sequences that are similar to each other.  Hence these 

landscapes are often called uncorrelated.  A biological interpretation is that epistasis is 

pervasive, with every site affecting every other site in a complex manner.  Knowing the 

fitness of a particular mutation on background A tells you nothing about its fitness on 

background B — even if background B is just one step away from A.  On uncorrelated 

landscapes there are many local peaks, randomly scattered across the landscape, and no 

starting sequence is far from one.  As a population climbs a local peak, the number of 

beneficial one-step neighbors is expected to shrink rapidly (KAUFFMAN 1993; ORR 2002; 

ROKYTA et al. 2006a).  So long as mutations are restricted to one step at a time, 

adaptations on such landscapes tend to be short with expected values less than five (ORR 

2002; ROKYTA et al. 2006a).  Most of the models that assume selective sweep dynamics 

also assume uncorrelated landscapes (Figure 1, left side). 

Intermediate landscapes allowing positive correlation in fitness between similar 

sequences have also been modeled.  One example includes the NK model, (KAUFFMAN 

1993; MACKEN and PERELSON 1989), where N represents the total number of nucleotide 

or amino acid sites and K is related to the number of epistatically interacting sites.  When 

K=0, an additive landscape results.  When K=N-1, a maximally rugged landscape is 
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produced.  The block model (ORR 2006; PERELSON and MACKEN 1995) takes a different 

approach: the sequence is partitioned into blocks (e.g., the domains of a protein).  Sites 

within a block interact in an uncorrelated, maximally epistatic manner, while different 

blocks interact in a purely additive way.  As the number of blocks moves from small to 

large, landscapes shift from rugged to smooth. While these illustrate two simple ways to 

model landscapes of intermediate ruggedness, an innumerable array of such landscapes 

are conceivable.  Maximally smooth and maximally rugged landscapes provide 

convenient extremes, but it is important to realize that the possibilities between them are 

vastly more complex than a continuum would imply. 

Another central component of most models is a distribution of beneficial mutation 

effects (i.e., selection coefficients).  An important exception to this is the model of DESAI 

and FISHER (2007) where all beneficial mutations are assumed to have the same fixed 

effect.  Among models where effects come from a distribution, most assume that 

beneficial mutations are random draws from an exponential.  Regardless of whether 

landscapes are assumed smooth or uncorrelated, the fitness of each mutant sequence is 

generally viewed as an independent draw from some parent distribution.  Although the 

wildtype is not most fit (the environment has changed), it should have high fitness 

relative to all the possible sequences.  The beneficial mutations represent the small 

fraction of other sequences with fitnesses above wildtype, and therefore comprise the 

upper tail of the parent fitness distribution.  Extreme value theory posits that if the parent 

distribution comes from one of the familiar tailed distributions like the normal or the 

gamma (or formally, from the Gumbell domain), then the uppermost tail will be 

exponentially distributed (GILLESPIE 1991; ORR 2003).  It is important to note that if the 
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parent distribution is not in the Gumbell domain, for example if it is a bounded 

distribution like the uniform, then the uppermost tail is not exponential. The generalized 

Pareto distribution (GPD) is a family of distributions that encompasses the extreme tails 

of a broad range of distributions.  JOYCE et al. (2008) examined the properties of adaptive 

walks with selective sweep dynamics on uncorrelated landscapes where beneficial effects 

are GPD distributed.  

A final and nuanced point about models of uncorrelated landscapes is that they 

generally assume that the fitness effects of beneficial mutations in subsequent steps come 

from the same distribution that produces first-steps (JOYCE et al. 2008; ORR 2002).  More 

precisely, subsequent steps are drawn from an ever-winnowing, rescaled upper tail of the 

parent distribution. When the upper tail is assumed exponential, then rescaling is 

irrelevant since a rescaled exponential is the same exponential.  When the upper tail is 

GPD but not exponential, the distribution changes only by a scale parameter in a 

specified way (BEISEL et al. 2007). 

The purpose of this research is to examine several of these major modeling 

assumptions in the context of experimental evolution of microbial populations.  We use a 

G4-like phage adapting to laboratory conditions in a flask-passage design.   Using full 

genome sequencing of individual plaques, we track the appearance of mutations and their 

change in frequency over passages.  We estimate mutant fitness in the same flask-passage 

conditions used for selection.  From these data, we address a number questions:  What 

type of dynamics characterize our experimental populations and do the dynamics change 

as we increase population size?  What distribution do the beneficial mutations come 
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from?  Is the distribution the same across different backgrounds?  What type of surface is 

the fitness landscape? 

 

MATERIALS AND METHODS 

Strains:  Research was conducted using the bacteriophage ID11, a member of familiy 

Microviridae described by ROKYTA et al. (2006b).   ID11 is a single-stranded DNA 

icosahedral virus with a genome 5,577 bases long encoding 11 genes.  ID11 was also 

used by ROKYTA et al. (2005) in a similar experiment to study the fitness distribution of 

first-step mutations.  The bacterial host used throughout was Escherichia coli C. 

Passage experiment:  Adaptations were conducted using a passage design modeled after 

ROKYTA et al. (2002; 2005).  Six replicate adaptations were conducted: three at a 104 

(small) and three at a 106 (large) bottleneck size.  A preliminary large bottleneck line was 

also conducted prior to the other six to fine-tune techniques.  All replicate lines were 

initiated from the same ancestral stock population that was derived from a single 

wildtype plaque grown at 37°C and suspended in 1 ml of sterile Luria-Bertani broth with 

CaCl2 supplemented to 2 mM (phage-LB).  Each line was carried out for 20 flask-passage 

increments.  Each increment of each line involved the following stages: (1) titer previous 

flask phage population on plates; (2) add 10 ml sterile phage-LB to 125 ml Erlenmeyer 

flask capped with loose inverted plastic cup; (3) shake flask in water bath [water 

depth=2.5 cm above liquid level in flask] at 200 rpm at 37°C for 5 minutes; (4) add 45 µl 

of 100x E. coli C freshly thawed freezer stock into shaking flask and allow to grow for 

one hour [45 µl of cell stock was previously calibrated to yield ~3 x 108 cells per ml after 

one hour growth]; (5) add approximately 104 [small line] or 106 [large line] phage to flask 
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based on titer from step 1; (6) allow phage to grow for 40 minutes [0.67  hr]; (7) kill cells 

by adding 200 µl chloroform to a 2 ml sample from the flask; (8) titer the population at 

beginning and end of growth to estimate population growth rate [i.e., fitness, w] 

expressed as doublings per hour based on the exponential relationship N0.67=N02
w0.67; (9) 

freeze portion of sample in 20% glycerol at -80°C for archived storage; use other portion 

to passage to next flask. 

Sampling and sequencing:  After 20 passages were completed, freezer stocks were used 

to sample individuals from the populations at time-points (i.e., passage numbers) 3, 5, 10, 

15 and 20.  For each replicate line at each of these time-points, the stock was plated and 

16 (time-point 3) or 32 (all other time-points) individual plaques were suspended in 50 µl 

of sterile phage-LB.  A sample of each was frozen in 20% glycerol at -80°C for future 

use in fitness assays.  Another sample of each was used to sequence the entire genome at 

single-coverage through a contract with Sequetech Corporation, Mountain View, CA.  

Genomes were assembled and SNPs identified using the application SeqMan Pro (version 

7.2.2) within Lasergene software (DNASTAR, Inc., Madison, WI).  After one round of 

gap filling was conducted, sequences were accepted only if either the entire genome was 

obtained, or if all of the following conditions were satisfied:  (i) >85% coverage; (ii) any 

observed SNPs were also observed in other samples from the same line; (iii) coverage 

included all sites known to be polymorphic.  To improve accuracy, all assembled 

genomes were independently analyzed by two people.  Under these criteria, 631 genomes 

were accepted into the dataset.  Complete coverage was obtained for 569 (90%) of these.  

Among the remaining 10%, mean coverage was 96%.  A whole-genome population 

sequence was also obtained for the preliminary large bottleneck line from time-point 18. 
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Fitness estimates:  Fitness was estimated for the wildtype and all first- and second-step 

mutants.  We also estimated fitness for all one-step mutations observed by ROKYTA et al. 

(2005), but not by us.  First-step mutants were assayed five times each in two batches 

while second-steps were assayed ten times each, also in two batches.  By batch we mean 

a group of assays done during one week from a common set of isolates. The wildtype was 

included in all batches as a control.  In the second-step assays, the first-step background 

was also included. 

Fitness assays were virtually identical to a single round of passaging (steps 1–8 in 

‘Passage Experiment’ section above, including use of the growth equation shown there) 

except for the source and number of phage added.  As a source, frozen, sequenced 

isolates were plated, picked and plaques suspended in 1 ml sterile phage-LB for 1–3 days 

to allow titers to stabilize.  These were titered and a target of 2000 phage was added at 

step 4 (instead of 104 or 106).  A small preliminary study on sources of variation in 

estimating fitness revealed that isolate age can have a significant effect.  Consequently, 

all assays were done on isolates between 2 and 7 days of age.  

Statistical analysis: To estimate mutant fitness and control for other factors (batch, assay 

order), fitness data were analyzed using the general linear model in R (R DEVELOPMENT 

CORE TEAM 2009).   Models of increasing complexity were considered beginning with 

observed fitness as a function of mutation identity alone and then adding (i) batch and (ii) 

within batch assay order.  The best model was selected using AIC (AKAIKE 1974). 

To test the uncorrelated landscape’s inherent assumption that the fitness effects of 

second-steps are drawn from the same distribution as first-steps (see Introduction), we 

used the GPD framework developed by BEISSEL et al. (2007).  We emphasize that our 
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test regards the distribution of fitness effects, and not fixed fitness effects (ROZEN et al. 

2002).  Our data are appropriate for such a test because they come from repeated 

sampling of the same pool of beneficial mutations where the identity of each mutation is 

known by whole-genome sequencing and is counted in the dataset only once.  One 

complexity with such data is that, even with repeated sampling, small effect mutations 

may be missed because they are more likely to be lost to drift or competition before 

detection.  Like BEISEL et al. (2007), we correct for this inherent bias by shifting the first-

step data to the smallest mutation significantly more fit than the wildtype (i.e., defining 

its fitness effect as zero).   By contrast, a dataset appropriate for studying fixed effects 

would include every observation and, ideally, the same mutations would never appear 

twice (since repeated sampling from a continuous distribution, as the model assumes, 

should yield repeat observations with probability zero).   

The GPD describes the upper tails of most distributions using a shape parameter, !, 

and a scale parameter, ".  BEISSEL et al. (2007) tested if fitness effects are exponentially 

distributed using a likelihood ratio test to compare the !=0 GPD (exponential) to the best-

fit GPD.  Similarly, we compute the likelihood ratio of a null model where all the data 

come from one GPD (with parameters !, ") to an alternative model where first- and 

second-step effects come from separate GPD distributions (!1, "1, !2, "2).  Uncertainty in 

the true fitness of mutants due to assay noise is accounted for using importance sampling 

(RIPLEY 1987).  We ask where the observed likelihood ratio (#obs) is located in the 

distribution of # when the null model is true.  The mathematical details of our likelihood 

ratio test are presented in Appendix A. 
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Note that in the likelihood ratio test on the combined dataset, we cannot shift the 

second-step data like we do the first-steps.  While shifting first-steps merely truncates the 

null distribution in a different spot, shifting second-steps creates a discontinuity in the 

null distribution that makes calculating the likelihood problematic.  There remains, 

however, a sampling bias against second-step mutations of small effect.  This bias should 

be less influential than it might seem since it affects both the null and the alternative 

models in the same way, and its effect should largely cancel in the ratio of their 

likelihoods.  To further guard against possible effects of the sampling bias, we designed a 

second test that is based on the distance between the largest second-step mutation and its 

first-step background (the largest first-step).  This distance does not depend on observing 

the small effect second-step mutations.  In the test, we simulate the distribution of this 

distance under the null using parametric bootstrap and compare the observed distance to 

this distribution.  Details are provided in Appendix B.   

Conditional on rejecting the null hypothesis, we then treat the first- and second-step 

mutations as separate datasets.  This allows us to shift both datasets to correct for 

sampling bias against small effect.  For each dataset, we calculate confidence intervals on 

! as well as test the hypothesis that 

 

! < 0  (i.e., that the GPD is truncated) vs. 

 

! " 0  with 

parametric bootstrap.  Simulation under known parameter values revealed that, as is 

common with estimating boundary parameters, our estimator is biased.  Our methods for 

correcting for this bias, estimating parameters, and testing for truncated GPDs is covered 

in Appendix C.  

An uncorrelated landscape also implies that the number of beneficial mutations on 

increasingly fit backgrounds should diminish rapidly.  We test this assumption by 
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estimating the number of beneficial mutations available on a high-fitness first-step 

background and then compare it to the expectation.  Formally, if a first-step background 

has rank r among first-steps, then the number of beneficial mutations available on this 

background will follow the negative binomial with parameters r and 0.5 and have an 

expected value of r (ROKYTA et al. 2006a).  To understand why this is, note that with the 

fixation of a first-step beneficial mutation, the background has changed, and a new set of 

mutational neighbors becomes accessible.  In the uncorrelated landscape model where 

genetic proximity is independent of fitness, the new set is simply a fresh draw of the 

same size from the same distribution as the original set of mutational neighbors.  The 

only difference is that the threshold defining what is beneficial has increased.  GUMBEL 

and SCHELLING (1950) showed that, for large sample sizes and independent of the 

distribution, the number of values in the new sample exceeding the rth-ranked value from 

a previous sample is negative binomial. 

Assuming a random transition is equally likely to be beneficial as a random 

transversion, then this argument should also hold for transitions.  That is, if background B 

has rank rB among the first-step transitions (where B itself could be a transition or not), 

the number of second-step beneficial transitions accessible from background B should be 

negative binomial (rB, 0.5).  We employ this second argument since we only have a 

reasonable sample size for transitions.  To be conservative, we use the observed number 

of beneficial transitions (tobserved) as a lower bound on the true number, and calculate the 

negative binomial probability of observing  tobserved on a background of rank rB.  

Substantial doubt is cast on the uncorrelated landscape if this probability is sufficiently 

small.  ! 

"
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RESULTS 

Number and identity of mutations:  The total number of first-step mutations observed 

in the six passage lines is 14 (Table 1).  Mutations are herein identified by nucleotide 

position and base change relative to the published wildtype sequence (GenBank 

accession AY751298).  Two first-step mutations (a3875g and c3876t) have estimated 

fitness less than the wildtype.  The sites are near the origin of replication and may 

represent mutational hotspots.  Removing these two and combining the rest with 

mutations from ROKYTA et al. (2005), who employed the same experimental conditions, 

16 first-step beneficial mutations are observed.   

In our experiment, four of these mutations$c2520t, g2534t, g3665t, and 

a3147g$were observed by time-point five in all, or all but one, line.  Several of these 

four may have been present in the ancestral stock at low frequencies.  The starting stock 

used in all lines was obtained from a single plaque that was grown from the non-lab-

adapted wildtype phage exposed to selective lab conditions (e.g., 37°C).  With plaques 

growing from one phage to 108–109 phage and mutations occurring at an estimated rate of 

1/300 replications (DRAKE et al. 1998), we expect many mutations to arise.  None will be 

present at high frequency, but adaptive mutations could increase in the plaque to modest 

frequency.  With inocula sizes of !104, the frequency of such adaptive mutations could 

still have been quite low (% 0.0003) and have had % 95% probability of making it into all 

lines (based on binomial probabilities).  Most importantly for interpreting our results, 

there are good reasons to believe that g2534t was present in the ancestral stock.  As a 

transversion, g2534t should be rare.  Indeed, it arose only once in twenty opportunities 
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for ROKYTA et al. (2005) and yet it was observed here in every line.  To independently 

determine if it was present in the starting stock, we sequenced the end-point from the 

preliminary line seeded with the same ancestral stock, several weeks before the other 

adaptations were conducted.  That population level sequence also contained g2534t.   

The fortuitous consequence of using a single plaque grown under selective 

conditions was that the high-fitness mutant g2534t became abundant in every line.  As a 

result, g2534t was the background upon which 13 of the observed 15 second-step 

mutations occurred (Table 1).  Four of these (a4541g, a4261g, g69t, c2140t) may not be 

beneficial given their lack of persistence (Figure 2) and low fitness estimates (Table 1).  

Only one of the second-step mutations (g3850a + c2520t) involves two mutations that 

have been observed as beneficial as first-steps.  One third-step mutation was observed.  

Dynamics:  The dynamics of mutation frequencies across passages differs substantially 

among the six passage lines (Figure 2).  While models of adaptation assume that the 

population begins as fixed for the wildtype, our populations were probably polymorphic 

at founding.  This somewhat complicates categorizing dynamics of each line.  Beginning 

with the small bottleneck lines, the dynamics range from being sweep-like to showing 

full-interference.  In line A (Figure 2A), the only mutations observed are first-steps 

(excepting the double mutant a4541g which is probably not beneficial), and fixation has 

occurred by passage 20.  In the sense that multiple haplotypes are competing in line A, 

the frequency dynamics are obviously akin to clonal interference.  But in the sense that 

only putative founder mutations are observed and no new beneficial mutations appear 

after the first sample, the mutational dynamics are selective sweep-like.   The implication 

is if the population began as monomorphic, a selective sweep might have occurred.  Line 
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B shows a similar pattern of only first-step mutations arising and a trend toward fixation.  

But in line B there are several unique mutations in addition to the founder set, making it 

more likely that some mutations arose on the wildtype background after passaging began.  

This is consistent with the clonal interference model.  Up until timepoint 10, line C shows 

patterns similar to lines A and B.  However, before any mutation fixes, several second-

steps and then a third-step arise.  With more than one mutation arising on the g2534t 

background and then a third-step mutation arising before any of the second-steps fix, line 

C is consistent with full interference dynamics. 

The three large passage lines (D–F) display extensive interference dynamics and, 

again, the pattern generally favors full interference over strictly defined clonal 

interference.  Inconsistent with the clonal interference model, we observe a case in line D 

where second-step mutations arise on two different first-step backgrounds (on g2534t and 

on g3850a) rather than waiting for one background to fix.   The multiple mutations model 

is harder to evaluate.  While the assumption of a fixed effect is obviously violated (Table 

1), the model’s real claim is not that a fixed effect is literally true, but rather that long-

term adaptation can be approximated with a fixed effect equal to an average among 

variable effects.  A less obvious test of the multiple mutations model is its assumption 

that the suite of next-step beneficial mutations in the population should arise on currently 

established most-fit background(s).  This assumption is generally supported, but not 

without exception.  In three of the four lines where beneficial second-step mutations arise 

(C–F), they arise on the most-fit g2534t background (C, E, and F).  In line D, however, 

the frequency changes suggest that g3850a is the most-fit background and line B echoes 
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this ranking; yet the second-step beneficial mutations that come to dominate by time-

point 20 are on the g2534t background. 

In their development of a model of clonal interference, GERRISH and LENSKI (1998) 

defined a leapfrog event as one in which a mutant type rises to >50% frequency, but is 

then superseded by another mutation from which it differs by two mutational changes 

(the most possible when only one-step mutations are permitted).  In passage line B we 

observe this effect when g2534t is replaced by g3850a as the dominant type between 

time-points 15 and 20.  The same event occurs in passage line D between time-points 5 

and 10.  In line D between time-points 10 and 15 we observe a more dramatic leapfrog 

event where g3850a is superseded by a suite of second-step mutations on the g2534t 

background — mutations that differ from it by three mutational steps. 

Fitness landscapes and distribution of fitness effects:  We tested whether the fitness 

values of first- and second-step mutations come from the same distribution.  In doing so, 

we first tested our fitness assay data for sources of systematic error.  The general linear 

model indicates that batch had a significant effect on fitness estimates (&AIC=-57.0), but 

that assay order within batch was not significant (&AIC=2.0).  To reduce bias in 

analyzing distributions, first-step fitness data were shifted so mutant a3864g had fitness 

of zero.  The likelihood ratio test for one- vs. two-fitness-distributions models (Appendix 

A) favors the two-distribution model 

 

(p = 0.03) .  The test for distance between largest 

first-step and largest second-step similarly rejects the null model (p=0.02). The bias-

corrected estimates for ! under the two-distribution model (with 95% CIs) are !1=-0.29 (-

1.85, 0.21) and !2=-0.11 (-2.88, 1.54).  These distributions, along with the best-fit null 

and the fitness data are presented in Figure 3.  When the hypothesis that the fitness 



 20 

distributions are truncated (

 

! < 0  vs. 

 

! " 0) is tested for the first-step data using bias-

corrected bootstrapping, the non-truncated distributions cannot be rejected (p=0.14).  For 

second-steps, where sample noise is high compared to effect size, there is little 

information regarding truncated vs. non-truncated distributions (p=0.61).  Using the 

BEISEL et. al. test (2007) of the similar exponential hypothesis (

 

! < 0  vs. 

 

! = 0) returns 

the same qualitative results: 

 

p = 0.08 and 

 

p = 0.20.  

Nine beneficial transitions are observed on the g2534t background (Table 1).  To 

test whether this number is consistent with the uncorrelated model expectation of a 

negative binomial distribution, we rank g2534t among the first-step transitions (see 

Materials and Methods for explanation).  By fitness assay, g2534t ranks first among all 

observed mutations, including transitions (Table 1).  In the frequency data (Figure 2), the 

only transition that may rank above it is g3850a.  This suggests that g2534t ranks first or 

second, but, clearly, we have not observed all first-step beneficial transitions; would its 

rank drop if we could observe all such mutations?  As we argue below, the large 

bottleneck lines were large enough to generate most beneficial transitions every few 

passages.  If there were any very high fitness transitions, they should have established 

and been observed.  It is therefore likely that g2534t genuinely ranks among the top two 

transitions.   Since the expected number of beneficial mutations under the negative 

binomial model is rank + 1 (ROKYTA et al. 2006a), on a background of rank one, two, or 

three, we expect to observe two, three or four total beneficial mutations.  In fact, we 

observed nine (Table 1).  The p-values associated with observing nine on a background 

of rank one, two or three are 0.001, 0.006, and 0.02.  Thus the data do not support the 

assumption of the fully uncorrelated landscape. 
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DISCUSSION 

Frequency of beneficial mutations:  The dynamics of adaptation depend strongly on 

how often beneficial mutations occur.  At one extreme, beneficial mutations are rare and 

selective sweeps dominate.  As the supply of mutations rises, say because population size 

increases, a secondary beneficial mutation will tend to establish before the first one fixes, 

but which secondary mutation and when it does so remains stochastic.  As the incidence 

of mutations further increases, the population produces more than one beneficial mutation 

each generation, then many, then most, then all such mutations.  With larger populations 

becoming increasingly saturated with the available beneficial mutations, the set of best 

mutations will establish and compete, and adaptation becomes more deterministic (JAIN 

and KRUG 2007; WAHL and KRAKAUER 2000).  This inevitable competition between 

these highly fit mutations also means that the rate of adaptation will tend to plateau with 

increasing mutation supply (DE VISSER et al. 1999).  One of our objectives in passaging at 

two substantially different bottleneck sizes (104 and 106) was to observe and perhaps 

demarcate where these transitions in dynamics occur. 

The 104 bottleneck size appears to put the population in the transition between 

selective sweep dynamics and highly stochastic interference dynamics.  As explained in 

Materials and Methods, the source population was very likely polymorphic and included 

the highly fit mutation g2534t.  Therefore, the appearance of multiple first-step mutations 

in all three lines is not illuminating.  More telling is the appearance of second-step 

mutations in the third line (interference dynamics), but their absence in the other two 

small lines (selective sweep-like dynamics; Figure 2, C vs. A and B).  Note that g4541t in 
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line A is probably not beneficial based on the fitness data from Table 1 as well its failure 

to persist.  Numerous beneficial mutations on the g2534t background exist (Table 1) and 

g2534t was the majority background in all three small lines for most of the passages.  So 

the opportunity for second-steps to arise in lines A and B clearly existed.  This begs the 

question: around what population size did the transition between selective sweeps and 

interference dynamics occur? 

To convert the population size data under periodic bottlenecks to effective sizes 

(Ne), we use the equation Ne=NbGr from WAHL and GERRISH (2001) where Nb is the 

transfer size, G is the number of generations between passages and r is the per generation 

exponential growth rate.  In all three small bottleneck lines, Ne was approximately 5 x 

104.  This suggests that in similar biological systems, populations will tend to adapt under 

sweep dynamics when Ne < 10
4 and under interference dynamics when Ne > 10

5.  

How similar must other biological systems be for this generalization to hold? 

Sweep dynamics will prevail when the time it takes for a beneficial mutation to arise and 

escape the vagaries of drift (i.e., to become established) is longer than the time for an 

established mutation to fix.  The expected number of generations to establish and fix are 

known from population genetics theory: testablish=1/Neµbs and tfix![ln(Nes)]/s, respectively 

where s is the selection coefficient and µb is the beneficial mutation rate (DESAI and 

FISHER 2007; GILLESPIE 1991).   Sweep conditions will prevail when Neµb << ln(Nes) 

(DESAI and FISHER 2007).  Hence, the similarity of other systems to ours depends not just 

on Ne, but also on s and µb. 

The s-values observed here (e.g., 0.05– 0.1 for second-steps) are relatively large.  

However, the size of s has relatively little influence on which dynamics prevail.  
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Mathematically, this is because s only appears in the log term of the inequality above. 

The magnitude of s instead dictates the time scale upon which the process plays out with 

large coefficients leading to both much shorter establishment and fixation times as 

illustrated in Figure 5. 

The more important factor influencing dynamics is µb, about which relatively little 

is known.  For our system, we can get an order of magnitude estimate of µb by again 

noting that second-step mutations established in only one of the three small bottleneck 

lines despite the opportunity.  Since these lines represent about 60 phage generations, the 

time to establishment must be very roughly on the order of 60 generations.  Assuming 

that s=0.075 (the midpoint of observed values), that Ne=4 x 10
4 (~Ne of the highly fit 

g2534t background upon which most beneficial mutations could have occurred), we solve 

the equation testablish=1/Neµbs for µb to get  µb ' 5 x 10-6.  The following cross-check of 

this estimate suggests this value is probably low, but not unreasonable.  When this rate is 

divided by an estimate of the per genome mutation rate of 1.0 x 10-2 from the closely 

related (X174 virus (CUEVAS et al. 2009; RANEY et al. 2004), it suggests that about one 

in every 2000 mutations is beneficial.  However, we observed nine beneficial transitions 

on the g2534t background and a simple mark-recapture model (MILLER et al. 2005) 

estimates that 18 exist.  There are 5577 transitions possible from this background, and 

18/5577 is 0.003, suggesting that about 1 in 300 mutations is beneficial.  In other words, 

µb is probably > 5 x 10-6.  Nonetheless, our approximation of µb is relatively similar to a 

recent estimate in E. coli of ~10-5, or 1 per 150 mutations (PERFEITO et al. 2007).  DRAKE 

et al. (1998) has shown that the per genome mutation rate is on the same order of 
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magnitude across most microbes.  It is conceivable that µb will also be in the vicinity of 

10-5 across many microbes. 

Figure 5 plots the expected times to establishment and fixation based on the above 

equations, emphasizing the transition from sweep to interference dynamics.  If µb is 

indeed near 10-5, then the transition from sweep to interference will occur between 104 

and 105 across a wide range of selection coefficients.  The dotted line in Figure 5 

illustrates that if µb is decreased an order of magnitude to 10-6, the effect is to increase the 

Ne where transition occurs approximately an order of magnitude.   LYNCH (2006) has 

estimated long-term Ne in prokaryotes, non-parasitic unicellular eukaryotes, invertebrates 

and land plants on the orders of 108, 107, 106 and 106 respectively.   Pathogens may have 

lower long-term Ne due to their host dependence.  While these estimates come from a 

dramatically different temporal scale than our research, they indicate that most microbes 

spend most of the time at effective sizes where interference dynamics are expected to 

dominate. 

Given these arguments, it is not surprising that in the three large bottleneck lines 

where the mean Ne'107, all lines exhibit interference dynamics.  More interesting is that 

the large lines may be in another transition zone, one where mutation supply is great 

enough to begin pushing the population down a more deterministic path. By passage 20, 

each large line has a different set of second-step mutations, giving the impression that the 

process is highly stochastic.  However, in all three large lines, secondary mutations 

affecting residue 171 in gene G (which encodes the major spike protein) appear to be 

emerging or have emerged as the most fit haplotype.  Specifically, in line E, mutation 

a4530g causes the T171A amino acid substitution in gene G and is clearly dominant.  In 
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line D, three mutations divide most of the frequency at time-point 20: c2113t, a4530g, 

and c4531t.  However, c2113t has declined in frequency since passage 15, suggesting it 

has lower fitness.  Note that this rank order is inferred from changes in frequency and not 

fitness assay estimates (Table 1) as confidence intervals from the fitness assays overlap 

substantially (Figure 4).  While mutation c4531t affects the same residue as a4530g, the 

substitution is T171I.  Further notice that in line D the increase of a4530g and c4531t also 

comes at the expense of a1958g and c2149t.  This is consequential for understanding line 

F.  Here, four mutations are observed in the last time-point: c2140t, a1958g, c2149t, and 

c4531t.  Mutation c2140t is little changed from passage 15 suggesting it is not most fit.  

The other three types are first observed at passage 20.  If the rank order deduced from 

line D above is correct, then c4531t affecting residue 171 in gene G would be the most fit 

among them.  

The convergence of the large bottleneck lines along similar adaptive paths is 

consistent with the argument that they lie in the transition zone of waning stochasticity.  

Yet Ne'107 is not nearly large enough to produce all beneficial mutations every 

generation.  Other beneficial mutations on the g2534t background (besides a4530g and 

c4531t) did establish in all three lines.  In general, five to ten passages (15 to 30 

generations) passed before mutations affecting residue G171 appeared.  This implies that 

when Ne<<107, a population is far less likely to obtain the most beneficial mutation.  

Consistent with this, the only small bottleneck line to proceed past first-step mutations 

(C) has committed to a totally different second-step on the g2534t background, either 

a1970g or a1948g. 
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Genetic background on which beneficial mutations arise:  Besides how often they 

occur, the background on which beneficial mutations may arise will dictate adaptive 

dynamics.  Several interference models have examined this topic in some detail (Figure 

1, right side) and made differing assumptions, yet virtually all assume an additive fitness 

landscape.  Ironically, while differing assumptions about the backgrounds on which 

mutations occur lead to different dynamics and rates of adaptation, the ultimate outcome 

is unaffected — the same pool of mutations will eventually fix regardless of order.  

Background is much more important on uncorrelated landscapes because the background 

a mutation arises upon will uniquely define the adaptive trajectory.  The issue also bears 

on if and how populations can cross fitness valleys in the adaptive landscape.  Several 

authors have argued that weakly beneficial, neutral or even mildly deleterious mutations 

may establish and have transient existences in the population (IWASA et al. 2004; JAIN 

and KRUG 2007; WEINREICH and CHAO 2005).  If a beneficial mutation occurs on such a 

background in a rugged or semi-rugged landscape, it may spawn a mutation that is more 

fit than any existing type and thereby steer adaptation.  Evolution of the influenza virus in 

humans via neutral networks may be a real world example of this type of dynamic 

(KOELLE et al. 2006). 

Our data indicate that beneficial mutations can arise on any background present in 

the population.  To illustrate, we compare our data to several of the aforementioned 

models.  Consistent with the clonal interference model of GERRISH and LENSKI (1998), a 

multitude of first-step mutations are observed on the wildtype background.  An important 

conclusion of clonal interference models is that the rate of fixation is slowed compared to 

selective sweep dynamics.  This slow down is implied in portions of our data.  Using the 
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estimated fitness from Table 1 and imagining that g2534t alone is competing with the 

wildtype, we would deterministically expect a single g2534t mutation to be virtually 

fixed in six to eight passages (depending on the bottleneck size).  In no lines did g2534t 

reach fixation by passage 10, presumably because its ascent was dampened by the 

presence of other first-step mutations that were substantially more fit than the wildtype. 

However, the data do not conform to the clonal interference assumption that 

multiple first-steps will compete and one will fix before any second-steps arise.  In the 

four lines where second-steps appear (Figure 2, C–F), they establish before any first-step 

reaches fixation. The multiple mutations model of DESAI and FISHER (2007) assumes that 

one or more beneficial mutations of equal fitness will increase in frequency and, before 

fixing, spawn one or more second-step beneficial mutations.  While less-fit backgrounds 

may give rise to mutations, it is only the mutations on the most-fit background(s) that will 

yield the new most-fit haplotypes(s).  The data generally support this assumption, though 

not without exception.  In all lines where second-steps arise (C–F), they do so before 

first-steps fix.  In lines C, E and F, the second-steps appear on the high-fitness g2534t 

background.  However, in the large bottleneck line D, frequency changes indicate that 

g3850a is probably outcompeting g2534t at time-point 10 (Figure 2).  Small line B 

further supports this rank order.  But before g3850a fixes, g2534t spawns several second-

step mutations that are more fit than g3850a and by time-point 20 have come to 

predominance.  Mutation g2534t is thus ‘rescued’ from its decline by producing second-

step mutations. 

Interestingly, time-point 20 in line D contains a second-step mutation on the waning 

g3850a background (g3850a + c2520t).  This double mutant may or may not have 
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changed the fate of g3850a had the experiment continued, but like the g2534t rescue 

event earlier in line D, it illustrates that the full interference models are likely correct: 

beneficial mutations may establish on any background present in the population and 

thereby affect dynamics.  In a recent flask-passage adaptation experiment similar to ours, 

but using an RNA bacteriophage, BETANCOURT (2009) also observed instances of both 

clonal interference and more complex interference dynamics, further supporting the full 

interference model. 

Leapfrog events:  An interesting case of mutations on a sub-optimal background 

affecting dynamics comes from what GERRISH and LENSKI (1998) called the leapfrog 

event.  Here, a mutant that is temporarily the most abundant in the population is 

supplanted by another genotype from which it differs by more than one mutational 

change.  By facilitating a more rapid genetic shift at the population level than is possible 

under selective sweeps, leapfrog events may be biologically significant when the 

population is under selective pressure from another evolving entity like a competitor or a 

host immune system.  Three instances of leapfrog events are observed in our data: line B 

time-points 15–20, line D time-points 5–10, and again in line D at time-points 10–20 

(Figure 2; see Results for details).  In the last case, the event involves a change of three 

mutations.  The data suggest leapfrog events may be common, and because beneficial 

mutations may arise on a diversity of backgrounds, leaps may involve multiple 

mutational steps. 

Distribution of beneficial effects:  Most models of adaptation assume fitness effects of 

beneficial mutations are distributed exponentially (see Introduction).  The empirical 

evidence for this has been mixed (BETANCOURT and BOLLBACK 2006; EYRE-WALKER 
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and KEIGHTLEY 2007; KASSEN and BATAILLON 2006; ROKYTA et al. 2008; ROKYTA et al. 

2005; SANJUAN et al. 2004).  ROKYTA et al. (2008) analyzed data from two phage 

systems — including the one studied here — and rejected the exponential in favor of a 

truncated distribution.  That analysis of ID11 was based on nine beneficial first-step 

mutations.  We (re)assayed fitness for those nine mutations plus an additional seven.  Our 

analysis of first-step mutations favors a truncated distribution (

 

ˆ ! = "0.29 , Figure 3), but 

the exponential distribution cannot be rejected (p=0.14 or p=0.08, depending on which 

test is used).  Analysis of second-steps yields extremely wide confidence intervals on ! 

(Figure 3), indicating that our assay noise is too large to make meaningful inferences 

about the shape of the second-step distribution.   

Another common assumption in models of adaptation is that the distribution from 

which fitness effects come remains unchanged as adaptation proceeds.  For purely 

additive landscapes this is literally true, while for uncorrelated landscapes in a static 

environment, the assumption is more precisely that the distribution at each step is always 

the rescaled upper tail of the same distribution.  We return to the topic of additive 

landscapes in the next subsection, and here address the fixed distribution assumption 

under uncorrelated landscapes.  A qualitative pattern that arises from this assumption is 

that the size of fitness effects will decrease as fitness increases along a walk.  This pattern 

has been observed previously in experimental evolution (BETANCOURT 2009; HOLDER 

and BULL 2001; SILANDER et al. 2007).  Our data show the same pattern, although in 

greater detail for only the first two steps: second-steps have both smaller absolute fitness 

effects (Figure 3) and smaller selection coefficients than first-steps (Figure 4).  
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However, the fixed-distribution assumption makes a more precise prediction than 

simply that fitness effects should decrease.  It specifies by how much they should 

decrease.  We tested this more specific prediction by asking whether the first- and 

second-step fitness effects fit a one-distribution model well compared with a two-

distribution model.  The results of the likelihood ratio test indicate that our second-steps 

do not come from the upper tail of the same distribution that generated the first-steps 

(p=0.03, Figure 3).  Given the large uncertainty in !, this cannot be the result of the first- 

and second-steps having incompatible shapes.  Instead, the result is driven by second-

steps being too large to be explained under the null model.  Recall that for bounded GPD 

distributions, first-steps are drawn from the full distribution and second-steps are drawn 

from the region of the distribution above their first-step background — hence the specific 

prediction about how much fitness effects should decrease.  The one-distribution (null) 

model does not fit the data well because there is a big gap between the largest first-step 

mutation and the estimated boundary (Figure 3A).  We confirmed this explanation using 

a second test that asks whether the difference between the largest first-step and the largest 

second-step (20.6 - 18.7 = 1.9; Table 1) is compatible with the null model (Appendix B).  

The rarity of a difference this large (p=0.020) again indicates that the one-distribution 

model can be rejected.  This suggests an unpleasant reality (from a modeling perspective) 

that the distribution of fitness effects may change with the background. 

Landscape ruggedness:  Mutational landscape models have tended to rely heavily on 

fitness landscapes at the theoretical extremes: maximally rugged (uncorrelated effects) or 

maximally smooth (additive effects).  We now critique our data from the two ends of this 

spectrum asking whether they are consistent with either.  As we saw in the previous 
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subsection, the likelihood ratio test casts doubt on the one-distribution assumption, and 

by extension, the uncorrelated landscape.  Another expectation on an uncorrelated 

landscape is that the number of beneficial mutations (i.e., exceedences) should be small 

for high ranking backgrounds.  Nine beneficial second-step transitions are observed on 

the high-fitness, high-ranking g2534t background.  Ignoring the fact that the true number 

must be larger than this, nine is too many compared to the negative binomial expectation 

of two to four beneficial transitions (p<0.02).  Thus the data do not support an 

uncorrelated landscape. 

Nor are the data consistent with a smooth fitness landscape.  One expectation for 

such landscapes is that mutations beneficial as first-steps will also be beneficial as 

second-steps and have consistent fitness effects (when measured as selection 

coefficients).  Among the 11 second-step beneficial mutations, only one involves the 

pairing of known first-step beneficial mutations (g3850a + c2520t).  In this case, the 

observed fitness of the second-step c2520t on the g3850a background (

 

ˆ s = 0.06) is 

substantially smaller than its effect on the wildtype background (

 

ˆ s = 0.26).  Rather than 

additive, this observation is consistent with a model of diminishing returns epistatis 

(BULL et al. 2000; DE VISSER et al. 1999) where a mutation’s fitness effect decreases as 

the background fitness increases. 

The data from background g2534t (the only well-sampled first-step background on 

which to evaluate second-step mutations) also disfavors an additive landscape.  On the 

g2534t background, zero of nine observed second-steps (all transitions) were observed 

beneficial first-steps.  While there are nine first-step mutations with 

 

ˆ s  values > 0.15, all 

observed second-steps have 

 

ˆ s  values ) 0.1 (Figure 4; Table 1).  If s values do not change 
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with background as additivity dictates, the first-step mutations should have been 

selectively favored and some should have appeared as second-steps.  Whether the first-

step mutations on the g2534t background generally have negative fitness effects (sign 

epistasis), or are simply less than additive (magnitude epistasis), is unknown. 

Thus the landscape is likely neither totally additive nor fully uncorrelated.  The 

truth, of course, must lie in between and the question is where.  Not only is the answer 

important for understanding the dynamics of adaptation, it also bears on the long-

standing debate about the evolutionary advantages of sex.  Much interest in interference 

dynamics in asexuals owes to how interference slows the rate at which beneficial 

mutations fix in the population (GERRISH and LENSKI 1998; KIM and ORR 2005; MULLER 

1932; ORR 2000; WILKE 2004).  In this framework, all beneficial mutations that are 

eventually out-competed are ‘wasted’ and interference is viewed as hindering adaptation.  

Sex circumvents the problem by allowing the competing beneficial mutations to be 

combined in the same genome.  The central premise of this argument, however, is that 

beneficial mutations are additive or at least semi-additive (i.e., magnitude epistasis).  If 

mutations instead show extensive sign epistasis (i.e., the landscape is moderately rugged), 

then the tendency for sex to combine beneficial mutations is of no advantage since they 

are not beneficial in combination (JAIN and KRUG 2007).  In fact, on rugged landscapes 

interference may actually be a creative evolutionary force in asexual populations because 

it allows the population to explore more sequence space than is possible under selective 

sweep dynamics (JAIN and KRUG 2007). 

Conclusion:  Our research has several implications about adaptive evolution and 

attempts to model it.  Except when populations are quite small ("104), selective sweep 
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dynamics are unlikely for many microbial populations.  Larger populations experience 

extensive interference dynamics where multiple beneficial mutations may arise on any 

background, although they are more likely to arise on the most fit backgrounds.  As 

population size and the amount of interference increases, the particular mutations that 

establish and increase in frequency become less stochastic.  We find evidence that the 

distribution of fitness effects changes between two backgrounds.  This is not consistent 

with a fully uncorrelated landscape.  Also inconsistent is the large number of beneficial 

mutations on a high-fitness first-step background.  Nor do the data support a smooth, 

fully additive landscape.  The truth likely lies somewhere between.  The data from our 

system suggest that the most reasonable modeling assumptions involve interference 

dynamics on partially correlated landscapes where mutations may occur on any 

background present in the population.  While these findings may not be surprising from a 

biological perspective, an examination of Figure 1 illustrates that models conforming to 

them do not currently exist.  Alternatively, some existing models may be robust to 

violations of these assumptions, but this has not been well demonstrated. 
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APPENDIX A: LIKELIHOOD RATIO TEST FOR THE CHANGE OF FITNESS EFFECTS

DISTRIBUTION ON DIFFERENT BACKGROUNDS

Fitness effects are determined by averaging the results of replicate fitness assays. The
variance associated with these assays demonstrates that measurement error contributes signif-
icantly to the overall pattern of variation. Measurement error must be accounted for when
attempting to distinguish between competing hypotheses regarding the distribution of fitness
effects. KASSEN and BATAILLON (2006) as well as BEISEL et al. (2007) recognized this fact
when considering the fitness distribution of adaptive mutations in the first step of an adaptive
walk. However, accounting for measurement error when two steps of adaptation are consid-
ered turns out to be a much more delicate problem with many more technical issues. There are
two reasons for this. First of all, our data demonstrate that second-step mutations tend to have
much smaller effects than first-steps, yet measurement error is on the same order of magnitude
for the fitness effects of both first- and second-step mutations (Table 1, Figure 4). So relative
measurement error associated with second-steps is quite high. The second problem involves
boundary issues associated with the GPD. Since the data tend to favor truncated distributions
and since the truncation boundaries are important parameters in the model, standard likelihood
approaches are problematic.

Distribution of the fitness effect of a single mutant

To simplify the presentation we will begin by developing an approximation to the distri-
bution of the average fitness effects of a single adaptive mutation. All of the more complex
formulas needed to calculate the likelihood ratio statistic will be variants of this basic distribu-
tion.

Let x be the fitness effect of a mutant relative to a particular wild-type. Following BEISEL

et al. (2007) we will assume that x follows the generalized Pareto distribution (GPD) which is
given below

g(x|κ, τ) = 1

τ

�
1 +

κ

τ
x
�− 1

κ−1

J(τx,κ) (1)

where J(z,κ) = I{κ < 0}I{0 ≤ z < −1/κ}+ I{κ > 0}I{z > 0}. I represents an indicator
function that takes the value 1 when the condition within parentheses is met and 0 otherwise.
We evaluate equation (1) at κ = 0 by taking the limit as κ goes to zero and noting

lim
κ→0

1

τ

�
1 +

κ

τ
x
�− 1

κ−1

=
1

τ
e−x/τ .

Let Y1, Y2, · · · , Ym be the replicate observed fitness values for a mutant with (unobserved)
fitness x. Using the normal distribution to account for measurement error, we assume that
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conditional on x, Y1, Y2, · · · , Ym is a random sample from a normal distribution with mean

x and variance σ2. Let Ȳ =
1

m

m�

i=1

Yi and S2 =
m�

i=1

1

m− 1
(Yi − Ȳ )2 be the sample mean

and variance respectively. It follows from basic statistical theory that (given x) Ȳ and S2

are sufficient statistics and (Ȳ − x)/(S/
√
m) follows the t-distribution with m− 1 degrees of

freedom. Given the sufficiency of the statistics Ȳ and S2 and the need to eliminate the nuisance
parameter σ2, we will replace the conditional likelihood of Y1, Y2, · · · , Ym given x with

fT ((Ȳ − x)/(S/
√
m))

where fT (t) ∝
�

1 +
t2

m− 1

�−m/2

is the standard t-distribution.

However, since x is unknown, in order to calculate the likelihood, we must average. This
leads to the following likelihood equation

L(Ȳ , S2|κ, τ) =
� ∞

−∞
fT ((Ȳ − x)/(S/

√
m))g(x|κ, τ)dx. (2)

Importance sampling

To calculate the integral in equation (2) we will use a method called importance sampling
(RIPLEY 1987). In order to average over all possible x values we sample X1, X2, · · · , XB

from a distribution Q(x) of our choosing and then approximate L(Ȳ , S2|κ, τ) by the following
weighted average

L(Ȳ , S2|κ, τ) ≈ 1

B

B�

i=1

fT ((Ȳ −Xi)/(S/
√
m))g(Xi|κ, τ)

Q(Xi)
. (3)

The validity of the above approximation follows from the law of large numbers. The efficiency
of the above approximation depends critically on the choice of Q(x). The best choice for Q(x)

would be the conditional distribution of x given Ȳ and S2. However, this distribution would
depend on κ and τ and would actually require a priori knowledge of the integral in equation
(2). The purpose of importance sampling is to choose Q(x) close to the distribution of x given
Ȳ and S2. Recall that conditional on x, (Ȳ − x)/S/(

√
m) follows the t distribution. This

observation motivates the use of the following distribution for Q(x). Here we assume Ȳ and
S2 are fixed and define

Q(x) =
fT ((Ȳ − x)/(S/

√
m))I{0 ≤ Ȳ−x

S/
√
m ≤ λ}

� λ
0 fT

�
(Ȳ − x)/(S/

√
m)

�
dx

. (4)
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where λ = −τ/κ for κ < 0 and we assume that λ = ∞ when κ ≥ 0. Thus we use a truncated
t distribution for our importance sampling distribution Q(x) where we essentially reversed the
roles of x and Ȳ . This will ensure that we efficiently sample unobserved Xi near the observed
data Ȳ , but we must pay attention to the boundary conditions. It is easy to calculate the
integral in the denominator of equation (4) by using the standard t distribution. For notational
convenience we define

tλ(Ȳ , S2) =
� λ

0
fT

�
(Ȳ − x)/(S/

√
m)

�
dx

where T follows the standard t-distribution with m − 1 degrees of freedom. Substituting
equation (4) into (3)

L(Ȳ , S2|κ, τ) ≈ 1
B

�B
i=1

fT ((Ȳ−Xi)/(S/
√
m))g(Xi|κ,τ)

Q(Xi)

= 1
B

�B
i=1 g(Xi|κ, τ)tλ(Ȳ , S2)I

�
0 ≤ Xi−Ȳ

S/
√
m < λ

� .

Likelihoods and likelihood ratios

Formally, let (w1,1, w2,1, · · · , wn1,1) and (w1,2, w2,2, · · · , wn2,2) be the fitness values of the
n1 and n2 observed first- and second-step mutations, respectively, listed from most fit to the
least fit (i.e., according to rank order notation). Assume that the background for the second-step
beneficial mutations is the most fit first-step background (i.e., is the background for second-
steps). This assumption can be easily relaxed, but it holds true for the data we analyze. To
reduce observational bias against small effect mutations, we follow BEISEL et al. (2007) and
right-shift the data by redefining the smallest beneficial first-step mutation significantly more
fit than wildtype as zero. We shift two mutations instead of one because our smallest effect
first-step has fitness near the wildtype (ŝ = 0.01; Table 1) and thus the one mutation shift
would do little to protect against sampling bias. In vector form, the first- and second-step data
are then defined as fitness differences above the second-smallest effect mutation:

X1 = (w1,1 − wn1,1, w2,1 − wn1,1, · · · , wn1−1,1 − wn1,1) = (X1,1, X2,1, · · ·Xn1−1,1)

and

X2 = (w1,2 − wn2,2, w2,2 − wn2,2, · · · , wn2−1,2 − wn2,2) = (X1,2, X2,2, · · ·Xn2−1,2).

The null hypothesis states that X1 = (X1,1, X2,1, · · ·Xn1−1,1) is a random sample drawn
from a GPD (κ, τ) representing the fitness effects distribution of first-step mutations. Con-
ditional on the largest effect first-step mutation, Xn1−1,1, the second-step fitnesses denoted
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by X2 = (X1,2, X2,2, · · ·Xn2−1,2) represent a random sample from a GPD (κ, τ ∗) where
τ ∗ = Xn1−1,1κ+ τ .

The alternative hypothesis states that X1 = (X1,1, X2,1, · · ·Xn1−1,1) is a random sample
from a GPD (κ1, τ1) representing the fitness effects distribution of first-step mutations. The
second-step fitnesses, denoted by X2 = (X1,2, X2,2, · · ·Xn2−1,2), represent a random sample
from a GPD (κ2, τ2).

However, since X1 and X2 are not directly observable, we define

Yj,i,k = Xj,i + �j,i,k

where �j,i,k is normally distributed with mean 0 and variance σj,i. Therefore, Yj,i,k is the
observed fitness for the ith step (i = 1, 2), the jth mutant (j = 1, 2, · · · , ni − 1) and kth
replicate fitness assay (k = 1, · · · ,mj). At each step (i) and for each mutant (j) we calculate
the average (over replicates) Ȳj,i and variance S2

j,i. In vector form,

Ȳi = (Ȳ1,i, Ȳ2,i, · · · , Ȳni−1,i)

and
S2
i = (S2

1,i, S
2
2,i · · · , S2

ni−1,i)

for each step i = 1, 2.
Then the likelihood of the data under the null hypothesis is given by

L(Ȳ1,S
2
1, Ȳ2,S

2
2|κ, τ, τ ∗) =




n1−1�

j=1

L(Ȳj,1, S
2
j,1|κ, τ)








n2−1�

j=1

L(Ȳj,2, S
2
j,2|κ, τ ∗)



 (5)

where L(Ȳ , S2|κ, τ) is given by equation (2) and here τ ∗ = Ȳn1−1,1κ+ τ .
The likelihood equation under the alternative model is given by

L(Ȳ1,S
2
1, Ȳ2,S

2
2|κ1, τ1,κ2, τ2) =




n1−1�

j=1

L(Ȳj,1, S
2
j,1|κ1, τ1)








n2−1�

j=1

L(Ȳj,2, S
2
j,2|κ2, τ2)



 .

(6)
We obtain the maximum likelihood estimates (MLEs) under both models by dividing the

parameter space into discretized values and searching for the peak. The importance sampling
size is set at 25 observations per mutation throughout. In practice, finding the MLEs turns out
to be difficult because the likelihood surface is characterized by a ridge running diagonally
across parameter values that is extremely narrow relative to the feasible resolution of the grid
(Figure 6). The importance sampling furthers the problem by adding a slight stochasticity to
where this ridge lies exactly. The strategy we use to map the likelihood surface is to begin with
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a value of λ (the boundary) slightly above the largest observation and calculate likelihoods
across a discretized set of τs and κs that yield this λ (recall λ = −τ/κ). We then shift λ
downward in small increments until the likelihood drops. In fact, the drop is cliff-like to nearly
zero with decreasing λ (Figure 6). This is followed by shifting λ upward in small increments
until the ridge top is crossed and peak likelihoods decline substantially. In order to avoid
bias against unbounded distributions (which lack λ), we also search in a grid-like manner for
incrementally increasing values of κ > 0 across a broad range of τs. Whereas our initial grid-
like search of parameter space yielded inconsistent results, this strategy of searching along the
diagonal yielded highly repeatable MLEs.

To calculate the likelihood ratio statistic, we begin by calculating the MLEs under the null.
Denote the MLEs under the null as κ̂, τ̂ and τ̂ ∗ = Ȳn1−1,1κ̂ + τ̂ . To fit the alternative model
to the data, we calculate the four MLEs under the alternative denoted by κ̂1, τ̂1, κ̂2, τ̂2. Denote
the likelihood ratio test statistic by

Λ ≡ L(Ȳ1,S2
1, Ȳ2,S2

2|κ̂, τ̂ , τ̂ ∗)
L(Ȳ1,S2

1, Ȳ2,S2
2|κ̂1, τ̂1, κ̂2, τ̂2)

.

We calculate the distribution of Λ under the null hypothesis using the parametric bootstrap
approach with 200 replicates, and from this distribution we calculate a p-value. Parametric
bootstraps involve, (1) resampling mutations from the estimated distributions; (2) resampling
replicate fitness assays for each mutation with sample noise drawn from a Normal with mean
zero and variance equal to the average variance observed across fitness assays (0.77); and (3)
averaging replicate assays for each mutant to obtained a dataset for analysis.

APPENDIX B: DISTANCE BETWEEN LARGEST SECOND- AND FIRST-STEP TEST

The observed distance between the largest second-step mutation and its background, the largest
first-step, does not depend on how many small effect second-step mutations were unobserved.
Consequently, this distance provides a robust summary statistic to test the null hypothesis that
both first- and second-steps come from the same distribution. The test is based on the distri-
bution of the distance statistic under the null model and entails the following basic steps. (1)
Estimate τ and κ under the the null model. (2) Simulate 1000 datasets under the null. (3)
For each dataset, calculate the distance between the largest second-step and its background.
(4) Compile distances into a distribution and define the p-value as the proportion of these ≥
the observed distance. Note that in step (1), first-step data are shifted to the smallest first-step
mutation significantly more fit than the wildtype while second-steps are not shifted because
such a shift is not feasible under the null (see Materials and Methods). In step (2), we are con-
servative by simulating under the upper bound on κ, rather than κ̂, which shifts the simulated
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distances to larger values. For τ in the step (2) simulations, we use the value that yields the
same λ produced by point estimates on τ and κ (based on λ = −τ/κ). Finally, we note that
simulations showed the test result (the p-value) was not sensitive to our choice of κ or τ so
long as the effect sizes and the sampling noise remain on the same scale (i.e., λ is not changed
appreciably).

APPENDIX C: BIAS CORRECTED PARAMETER ESTIMATION

The LRT described in Appendix A and applied to our data favors the alternative, two-distribution
model (see Results). We, therefore, wish to obtain estimates of κ and τ and confidence inter-
vals around them under this model. Since first- and second-steps are independent under the
alternative model, parameter estimation can be undertaken for one dataset at a time. Analysis
of simulated datasets with known parameters revealed that the MLEs from Appendix A are
biased. The nature of the bias is to favor more negative κ values and the truncated distributions
these produce. In essence, the likelihood is usually maximized by imposing a boundary (λ) just
above the largest observation even when the true distribution has a tail beyond this, leading to a
bias. Truncated distributions where the truncation point is a parameter in the model, referred to
in the statistical literature as ‘range dependent models,’ often show this kind of bias. We need
to correct for this bias and do so as follows. For a fixed value of κ, simulate 100 datasets based
on sampling from the GPD the same number of mutations as the real data and then generate
observations equal in number to the real data, by adding normally distributed sampling error
(µ = 0, σ = σ̂ from real dataset). For the value of κ under consideration, fix τ so that the
expected value of the resulting GPD (τ/(1−κ)) will be equal to the observed sample average.
This ensures that the magnitude of simulated fitness effects relative to the sampling error will
remain consistent with the real dataset across values of κ. For each of the 100 data sets, esti-
mate κ by maximum likelihood as described in Appendix A. Calculate the mean MLE across
these 100 datasets as an approximation of E[κ̂|κ]. Repeat this across a range of simulated κ

values (0, -0.25, -0.50, -0.75, -1.00, -1.25). We then plot E[κ̂|κ] as a function of true κ and fit
it to a simple function. This yields an approximation to the relationship E[κ̂|kappa] = g(κ).
Replacing E[κ̂|kappa] with κ̂ and solving for κ provides a bias-corrected estimate, κ̂corrected.
The bias-correction functions, g(κ), along with the simulated datapoints they are based upon
are shown in Figure 7.

We apply this bias correction to the first- and second-step datasets separately. In both
cases, the data is shifted to the smallest mutation substantially more fit than the background.
To calculate approximate confidence intervals on the first- and second-step κ̂corrected estimates,
we again treat them separately and simulate 100 datasets under the bias-corrected estimates,
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κ̂corrected. For each dataset, we obtain MLEs and apply the bias correction. The 100 κ̂corrected

values are sorted, and those ranked 2nd and 97th are used to form the confidence interval.
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FIGURE LEGENDS 

FIGURE 1.  Relationships among many mutational landscape models based on their 

assumptions. Superscripts indicate where models are published: 
a
ORR 2000, 

b
KAUFFMAN 

1993, 
c
MACKEN and PERELSON 1989, 

d
PERELSON and MACKEN 1995, 

e
ORR 2006, 

f
GILLESPIE 1991, 

g
ORR 2002, 

h
ROKYTA et al. 2006, 

i
JOYCE et al. 2008, 

j
GERRISH and 

LENSKI 1998, 
k
WILKE 2004, 

l
KIM and ORR 2005, 

m
DESAI and FISHER 2007,  

n
PARK and 

KRUG 2007,  
o
CAMPOS and DE OLIVEIRA 2004, 

p
JAIN and KRUG 2007, 

q
BRUNET et al. 

2008.  *Dotted line tracks model of 
l
KIM and ORR 2005 which assumes a small number 

of beneficial mutations on a smooth landscape and, therefore, a bounded walk.  **Dashed 

line tracks model of 
p
JAIN and KRUG which assumes bounded walks on uncorrelated 

landscapes, but where the dynamics can be either selective sweeps or any type of 

interference.  These two models do not fit the family descriptions at the figure bottom.  

The model of WAHL and KRAKAUER 2000 is not shown because it is general enough to 

potentially occupy more than one region on the conceptual map. 

 

FIGURE 2.  Observed mutation frequencies across time-points in replicate adaptations.  To 

the left (A-C) are three small bottleneck (

 

!10
4) replicates; to the right (D-F) are three 

large bottleneck (

 

!10
6) replicates.  Sample sizes (number of sequenced isolates) are 

shown on the horizontal axis.  Note that first-step mutations are shown as solid colors, 

second- and third-steps are cross hatched with hatch coloring corresponding to their 

background. 

 



FIGURE 3.  Observed fitness effects and fitted GPD distributions under the one-

distribution (null) and two-distributions (alternative) models.  Point estimates and 95% 

confidence intervals are given in inset legends and presented visually as solid and dashed 

lines, respectively.  Note that confidence bounds are calculated on ! only (see Materials 

and Methods).  The bounds on " are defined based on upper and lower bounds on ! to 

maintain a scale consistent with the point estimates.  (A) First-step mutations and fitted 

null model. (B) Second-step mutations and fitted null model.  Parameter estimates same 

as A.  (C) First-step mutations and fitted alternative model.  (D) Second-step mutations 

and fitted alternative model.  Note changes in scale on both axes between figures.   

 

FIGURE 4.  Selection coefficients and their 95% confidence intervals for all mutations in 

this study.  In black are first-step mutations on the wildtype background.  In light gray are 

second-step mutations on the g2534t background.  In white are second-step mutations on 

other first-step background.  The first-step deleterious mutation a3875g is omitted for 

purposes of scale.  Fitness was not measured on the third-step mutation a3010g. 

 

FIGURE 5.  Transition from sweep to interference dynamics across Ne.  Descending, 

straight lines are expected times for a beneficial mutation to establish and 

ascending, curved lines are expected times to fixation for an established mutation 

(based on !!"#$%&'"("#$%!µ%&)$*+)!,'-!'()*%!&+,$&).  Arrows indicate Ne where 

approximate transitions in dynamics occur as emphasized by black and white 

bands below horizontal axis. 

 



FIGURE 6.  Likelihood surface for first-step mutations under the alternative model.  Notice 

the severity of the high-likelihood ridge cutting diagonally across the surface (i.e., for a 

fixed #).   Also note the cliff-like drop as # decreases (i.e., with decreasing " and !).  The 

point of drop-off is defined by the largest observed fitness value. 

 

FIGURE 7.  Bias correction in ! estimation.  Data is simulated under known ! (horizontal 

axis) and used to estimate 

 

ˆ ! .  Averaged over many datasets, this approximates E[!̂ |! ]  

(vertical axis).  Fitting these datapoints to simple functions and solving for ! provides a 

bias correction.  As a comparison, the dashed line represents an unbiased estimator. 



TABLE 1.  Mutations observed in passage experiments on ID11 identified by nucleotide 

substitution and sorted by fitness.  Also included are mutations observed by ROKYTA et 

al. (2005) under the same adaptive conditions.  
a
The amino acid position gives the gene 

name followed by the residue number.  
b
Fitness is reported as log2 increase in phage per 

hour.   
c
 ‘— ‘ indicates not applicable because ROKYTA et al. (2005) did not progress past 

one step mutations.  ‘NA’ indicates not assayed.  Note that some genes in ID11 overlap; 

mutations 1585 and 1808 affect multiple genes. 
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TABLE 1 

Mutations observed during phage adaptation 
 

M
u

ta
ti

o
n

 t
y

p
e

 

Mutation 

position in 

genome 

(nucleotide 

substitution) 

Background 

Amino 

acid 

posit-

ion
a
 

Amino 

acid 

change F
it

n
e

s
s

b
 

SE (95%CI) 

S
e

le
c

ti
o

n
 

c
o

e
ff

ic
ie

n
t 

# lines 

obs. in 

(this 

study, 

Rokyta 

et al. 

2005)
c
 

— wildtype  — — — 14.3 0.17 (14.0-14.6) 0 — 

3875 (a!G) wildtype F425 T!A 11.0 0.27 (10.2-11.8) -0.23 1 (1, 0) 

3876 (c!T) wildtype F425 T!I 13.7 0.20 (13.1-14.3) -0.04 2 (2, 0) 

3282 (c!T) wildtype F227 S!F 14.5 0.05 (14.4-14.6) 0.01 1 (1, 0) 

3567 (a!G) wildtype F322 N!S 14.8 0.30 (14.0-15.6) 0.04 2 (1, 1) 

3864 (a!G) wildtype F421 D!G 16.6 0.51 (15.2-18.0) 0.16 1 (0, 1) 

3134 (c !T) wildtype F178 R!C 16.8 0.44 (15.6-18.0) 0.18 1 (1, 0) 

3543 (c!T) wildtype F314 A!V 16.9 0.21 (16.3-17.5) 0.18 1 (0, 1) 

2609 (g!T) wildtype F3 V!F 17.2 0.25 (16.5-17.9) 0.21 1 (0, 1) 

2615 (a!G) wildtype F5 T!A 17.3 0.13 (16.9-17.7) 0.21 1 (1, 0) 

3147 (a!G) wildtype F182 N!S 17.4 0.27 (16.7-18.1) 0.22 1 (6, 0) 

1585 (a!G) wildtype A509  silent  17.6 0.07 (17.4-17.8) 0.23 1 (1, 0) 

  A*296 silent     

  B104  T!A     

3857 (a!G) wildtype F419 T!A 17.6 0.12 (17.3-17.9) 0.24 1 (0, 1) 

3665 (c!T) wildtype F355 P!S 17.6 0.11 (17.3-17.9) 0.24 6 (5, 5) 

4533 (g!T) wildtype G172 V!F 17.9 0.48 (16.6-19.2) 0.25 1 (1, 0) 

2520 (c!T) wildtype J15 A!V 17.9 0.12 (17.6-18.2) 0.26 7 (6, 6) 

3850 (g!T) wildtype F416 M!I 18.1 0.35 (17.1-19.1) 0.27 2 (1, 1) 

3850 (g!A) wildtype F416 M!I 18.2 0.22 (17.6-18.8) 0.28 4 (3, 2) 

1
st 

step 

2534 (g!T) wildtype J20 V!L 18.7 0.25 (18.2-19.2) 0.31 2 (6, 1) 

4541 (a!G) 2534 (g!T) G174 silent 17.8 0.12 (17.5-18.1) -0.05 1 (1, —) 

4261 (a!G) 2534 (g!T) G81 N!S 18.1 0.14 (17.8-18.4) -0.03 1 (1, —) 

69 (g!T) 2534 (g!T) A4 T!I 18.3 0.22 (17.8-18.8) -0.02 1 (1, —) 

2140 (c!T) 2534 (g!T) D55 silent  18.5 0.17 (18.1-18.9) -0.01 1 (1, —) 

3358 (t!C) 2534 (g!T) F252 silent 18.7 0.27 (18.1-19.3) 0.00 1 (1, —) 

1808 (a!G) 2534 (g!T) K57 Stop!W 19.6 0.20 (19.1-20.1) 0.05 1 (1, —) 

  C30 D!G     

4530 (a!G) 2534 (g!T) G171 T!A 19.8 0.20 (19.3-20.3) 0.06 2 (2, —) 

1970 (a!G) 2534 (g!T) C84 N!S 19.8 0.13 (19.5-20.1) 0.06 1 (1, —) 

4531 (c!T) 2534 (g!T) G171 T!I 19.9 0.23 (19.4-20.4) 0.07 2 (2, —) 

2113 (c!T) 2534 (g!T) D46 silent 20.1 0.18 (19.7-20.5) 0.08 1 (1, —) 

2149 (c!T) 2534 (g!T) D58 silent 20.2 0.34 (19.4-21.0) 0.08 2 (2, —) 

1958 (a!G) 2534 (g!T) C80 N!S 20.4 0.15 (20.1-20.7) 0.09 2 (2, —) 

1866 (c!T) 2534 (g!T) C49 silent 20.4 0.24 (19.9-20.9) 0.09 1 (1, —) 

1948 (a!G) 2534 (g!T) C77 T!A 20.6 0.20 (20.1-21.1) 0.10 1 (1, —) 

386 (a!G) 1585 (a!G) A110 I!V 16.9 0.19 (16.5-17.3) -0.04 1 (1, -— 

2
nd 

step 

2520 (c!T) 3850 (g!A) J15 A!V 19.3 0.25 (18.7-19.9) 0.06 1 (1, —) 

3
rd

 

step 
3010 (a!G) 

2534 (g!T) + 

1970 (a!G)  
F136 silent NA NA NA 1 (1,—) 


