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ABSTRACT

We report a complex set of scaling relationships between mutation and reproduction in a simple model
of a population. These follow from a consideration of patterns of genetic diversity in a sample of DNA
sequences. Five different possible limit processes, each with a different scaled mutation parameter, can be
used to describe genetic diversity in a large population. Only one of these corresponds to the usual
population genetic model, and the others make drastically different predictions about genetic diversity.
The complexity arises because individuals can potentially have very many offspring. To the extent that this
occurs in a given species, our results imply that inferences from genetic data made under the usual
assumptions are likely to be wrong. Our results also uncover a fundamental difference between pop-
ulations in which generations are overlapping and those in which generations are discrete. We choose one
of the five limit processes that appears to be appropriate for some marine organisms and use a sample of
genetic data from a population of Pacific oysters to infer the parameters of the model. The data suggest
the presence of rare reproduction events in which �8% of the population is replaced by the offspring of a
single individual.

DNA sequences are variable within species because
mutations have occurred between the present day

and the time of the most recent common ancestor
(TMRCA) at most genetic loci. Mutation rates are quite
small: on the order of 10�10 per base pair per repli-
cation event in eukaryotes and 10�6–10�10 in microbes
(Drake et al. 1998), while mutation rates measured
from sequence differences between species range from
�10�8 to �10�10 per base pair per generation (Li 1997).
The abundance of genetic variation within most species
implies that a great number of generations must have
elapsed since the MRCA. The occurrence of the MRCA
at a locus results from the birth and death of individuals
in a population (hereafter synonymous with species).
Over time, some genetic lineages are lost and others
leave many descendants. Other things being equal,
TMRCA should be greater in a large population than in a
small one. If we take 10�5 as a typical mutation rate per
locus per generation, then to see any genetic variation,
TMRCA must be roughly on the order of the inverse of
this, or �100,000 generations.

What, then, do we expect the relationship to be be-
tween TMRCA and the population size N? The bulk of
work has focused on just one possibility: that TMRCA

should be a constant multiple of N generations. Then if
N is very large, and the inverse of the mutation rate 1/m

is also large, the level and pattern of genetic diversity
in a sample of DNA sequences will depend only on
the product Nm. For example, in the neutral haploid
Wright–Fisher model (Fisher 1930; Wright 1931)
there is a chance 1/N that two sequences are descended
from a common ancestor in the previous generation
and a chance 1� (1� m)2 � 2m that there is a mutation
between them in that generation. The expected num-
ber of differences between a pair of sequences is E[K]�
2Nm, which is simply the product of the expected
number of generations to the common ancestor (N)
and the expected number of mutations per generation
on the two genetic lineages (�2m).
A rigorous formulation of these ideas yields the

coalescent (Kingman 1982a,b; Hudson 1983; Tajima
1983), which is a continuous-time stochastic process
for the ancestry of a sample from the present back to the
MRCA. In the limit N / ‘, and with time measured in
units proportional to N generations, each pair of an-
cestral lines reaches a common ancestor, or coalesces,
with rate 1. Independently, each ancestral line under-
goes mutation with rate u/2. This holds when Nm is
constant in the limit asN tends to infinity. In theWright–
Fisher model above 2Nm/ u, so that E[K] ¼ u, as N/
‘. This scaling between mutation and population size is
shared by the various extensions of the coalescent that
are reviewed in Nordborg (2001). The discovery of the
coalescent greatly expanded the ways in which genetic
data can be used to make inferences about historical
events and the characteristics of populations (Tavaré
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2004).Although the coalescent is a continuous-timepro-
cess that exists in the limit as N / ‘ with time rescaled
by N, it is used to approximate the behavior of gene
genealogies in a wide range of species whose population
sizes are very large.

It is important to note that the scaling relationship
betweenN andm in the coalescent is the consequence of
a key assumption: that the variance s2

N of the number of
offspring among individuals in the population is not too
large. Specifically, in the original proof of the coalescent
Kingman (1982a,b) assumed that this variance con-
verged to a constant s2 in the limit N/ ‘. This assump-
tion has the additional consequence that only binary
mergers of ancestral lines occur in the limit, so the gene
genealogy of the sample is a bifurcating tree. Recently, a
broader class of ancestral processes has been described
in which this assumption about the distribution of
offspring number is relaxed. While Kingman’s coales-
cent is robust to many deviations from its assumptions
(Möhle 1998, 1999), amajor shift in the behavior of the
ancestral process occurs when the variance of offspring
number is large. The general ancestral process allows
for multiple mergers of ancestral lines and happens
on a timescale that is faster than that of Kingman’s
coalescent (Pitman 1999; Sagitov 1999; Schweinsberg

2000; Möhle and Sagitov 2001).
We consider a simple neutral population model that

can exhibit multiple-mergers behavior in the limit as the
population size tends to infinity. Depending on param-
eter values, it can also converge to Kingman’s coales-
cent. Through analysis and simulations, we address two
main questions. First, what are the possible behaviors
of such a model with respect to the scaling relation-
ship between mutation rate and population size? This
question stems from the desire to explain genetic diver-
sity. In short, the model must predict nonzero levels of
genetic variation if the coalescent withmultiplemergers
is to be a viable alternative to Kingman’s coalescent for
many species. Second, what are the differences between
the coalescent with multiple mergers and Kingman’s
coalescent with respect to predictions about patterns of
genetic variation in a sample? Kingman’s coalescent is
the standard for interpreting genetic variation, but it is
not uncommon to reject this null model, even using
simple tests (Tajima 1989; Fu and Li 1993). For many
species, the coalescent with multiple mergers might be
a better null model than Kingman’s coalescent.

The variance of offspring number does appear to be
very high in some species, in particular those with type
III survivorship curves, which produce very large num-
bers of offspring in the face of highmortality early in life
(Hedgecock 1994). This strategy is common among
marine organisms but it also occurs in terrestrial species
that have large reproductive potential, such as some
plants and fungi.Hedgecock (1994) proposed that very
large s2

N , or Vk (Crow and Kimura 1970), is the primary
reason that levels of genetic variation in many species

are much lower than predictions based on their pop-
ulation sizes (and the assumption that u } Nm). Esti-
mates of Ne based on temporal variation of allele
frequencies or on samples of genetic data from a single
time point are often much lower than the estimates,
made independently, of the actual population size N.
Small values of the ratio Ne/N are taken as evidence of
large Vk since Ne/N � 1/Vk in many models (Crow and
Kimura 1970; Hedrick 2005). For example, Hedgecock

(1994) estimated the ratio Ne/N to be between 10�5 and
10�6 in a population of the Pacific oyster (Crassostrea
gigas). Turner et al. (2002) estimated Ne/N to be,10�3

in a commercially important fish, the red drum (Sciae-
nops ocellatus). Hedgecock (1994) also cites the case
of the American lobster (Homarus americanus) whose
effective population size is estimated to be �104 while
some 107 lobsters are harvested annually. Árnason
(2004) estimated Ne/N to be 10�5–10�6 in the Atlantic
cod (Gadus morhua).

We suggest that the multiple-mergers coalescent pro-
cesses might resolve many of the questions raised by
Hedgecock (1994) and others. These ancestral pro-
cesses are radically different from Kingman’s coales-
cent: the relationship between u and the population size
N is less than linear, gene genealogies include multi-
furcations, and these processes have no effective pop-
ulation size in the usual sense (see the discussion). We
identify one such multiple-mergers coalescent process,
of five that are possible under the model we propose in
the next section, and we apply it to a sample of genetic
data from Pacific oysters in British Columbia (Boom
et al. 1994). The model includes the possibility that the
offspring of a single individual replace a substantial
fraction of the population and yet still predicts that
some genetic variation should be observed. This ad-
dresses the point made by Árnason (2004) in his study
of Atlantic cod, that ‘‘large’’ reproduction events cannot
be too frequent or there would be no genetic variation.
For Pacific oysters in British Columbia, we find that the
individuals who win Hedgecock’s (1994) reproduction
‘‘sweepstakes’’ replace �8% of the population.

METHODS AND RESULTS

We consider the idealized model in Figure 1. At each
discrete time step, exactly one individual reproduces
and is the parent of U � 1 new individuals. The parent
persists, while its offspring replaceU� 1 individuals who
die. The total population size is N and the N � U other
individuals simply persist, until the next time step when
they might be chosen to die or to reproduce. We assume
that there are no fitness differences among individuals
in the population. Thus, the parent is chosen at random,
uniformly from the population, and so are the individ-
uals who will die, with the exception that the parent
does not die in the same time step that it reproduces.
Mutations can occur to any of the U � 1 offspring when
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they are produced by the parent, while the parent and
the N � U other individuals cannot mutate. This is a
generalization of a well-studied model in population
genetics, which was introduced by Moran (1958, 1962).
In the usual Moran model, U is always 2, while in the
general model it is a random variable that can be any
number from 2 to N.

Mathematical analysis of ancestral limit processes:
Consider a sample of size n taken without replacement
from the population. The gene genealogy traces the
ancestral lines of the sample back to their MRCA. Time
is measured backward into the past, with the time of
sampling defined to be time zero. We use the term ‘‘x-
merger’’ to denote the event that x ancestral lines are
descended from a singlemember of the population (the
parent above) in a single time step. If an x-merger occurs
when there are i ancestral lines, then the number of
ancestral lines changes from i to i � x 1 1 in that time
step, and x¼ 2, 3, . . . , i. The probability of an x-merger is
given by

Gi;x ¼
XN
u¼2

PU ðuÞ

u

x

� �
N � u

i � x

� �
N

i

� �

¼
i

x

� �XN
u¼2

PU ðuÞ
ðuÞxðN � uÞi�x

ðN Þi
; ð1Þ

in which PU(u) is the probability function, or distribu-
tion, of the random variable U, and the notation (r)j is
for the descending factorial, r(r � 1) � � � (r� j1 1) with
(r)0¼ 1. The events x¼ 0 and x¼ 1 are also possible, and
we have

Pi
x¼0 Gi;x ¼ 1, but events in which x, 2 do not

lead to mergers. The assumption of a single reproduc-
tion event per time step excludes the possibility of
simultaneousmergers (Schweinsberg 2000; Möhle and
Sagitov 2001).

A key quantity in assessing convergence to a contin-
uous-time limit process is what Möhle (1998) has called
the coalescence probability, which he denoted cN, but which
in our notation is G2,2. From Equation 1, we have

G2;2 ¼
XN
u¼2

PU ðuÞ
uðu � 1Þ
N ðN � 1Þ ¼

E ½U ðU � 1Þ�
N ðN � 1Þ : ð2Þ

The coalescence probability must tend to zero asN/ ‘

for a continuous-time limit process to exist. One unit of
time in the limit process is typically taken to be 1/G2,2

steps in the discrete-time model. The requirement that

G2,2 / 0 as N / ‘ excludes certain distributions of U,
namely those that have too much weight on values of U
of order N. As in Kingman’s coalescent, we seek a limit
process for use as an approximation to the behavior of
gene genealogies in a large population.
Let m be the probability of mutation for each of the

U� 1 offspring in each single time step.Mutations to the
offspring occur independently, but neither the parent
nor the N � U individuals who simply live through each
time step can mutate. To capture the fact that mutation
rates are very small, we let m / 0 as N / ‘, although
for the moment we refrain from specifying its rate of
approach to zero. With m infinitesimally small, genetic
variation cannot be explained by mutations that co-
occur with mergers because only a finite number of
mergers occur in the ancestry of any (finite) sample. If
the model is to predict realistic (neither zero nor in-
finite) levels of genetic variation, then in one time step
the probability

Hi ¼ mi
XN
u¼2

PU ðuÞ
ðu � 1ÞðN � uÞi�1

ðN Þi
ð3Þ

that one of the i lines is an offspring, and it mutates,
must be of the same order of magnitude as Gi,x for x ¼
2, 3, . . . , i. The probability Hi is similar to mGi,1, but
requires that the single line is one of the u� 1 offspring
and not the parent itself.
The usual way to measure time in these models is to

scale it by the inverse of the coalescence probability, so
that one unit of time in the limit process is equal to 1/
G2,2 steps in the discrete-time model (Pitman 1999;
Sagitov 1999; Möhle and Sagitov 2001; Birkner et al.
2005). However, as is illustrated below, we find that this
choice of timescale makes it difficult to interpret the
relative sizes of gene genealogies. Therefore, we scale
time by 1/G2,2 times a constant c2, which derives from
the simple model for PU(u) that we adopt in Equation 7
below. We emphasize that the predictions of the model
concerning patterns of genetic variation do not depend
on which of these timescales is used.
After scaling by c2/G2,2 the rate of x-mergers becomes

l
ðN Þ
i;x ¼ c2Gi;x

G2;2

¼ i
x

� �
c2
XN
u¼2

P*U ðuÞ
ðu � 2Þx�2ðN � uÞi�x

ðN � 2Þi�2

; ð4Þ

where x ¼ 2, 3, . . . , i, and

PU*ðuÞ ¼
PU ðuÞuðu � 1Þ=ðN ðN � 1ÞÞP
N
y¼2 PU ðyÞyðy � 1Þ=ðN ðN � 1ÞÞ ð5Þ

is the rescaled distribution of U in which each value is
weighted by the corresponding probability of coales-
cence. Of course,

PN
u¼2 PU

*ðuÞ ¼ 1. The limit process
follows from the existence of limits li;x ¼ limN/‘l

ðN Þ
i;x

Figure 1.—A modified Moran model, in which individuals
can have many offspring.
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(Pitman 1999; Sagitov 1999). Note that PU*(u) cor-
responds to the measure L invoked in other works
(Pitman 1999; Sagitov 1999; Möhle and Sagitov
2001; Birkner et al. 2005).

Whether a limit process of our model predicts reason-
able levels of genetic variation will depend on the value
of the scaled rate of mutation per ancestral line,

uðN Þ=2 ¼ c2Hi

iG2;2
¼ mc2

XN
u¼2

PU*ðuÞ
ðN � uÞi�1

uðN � 2Þi�2

; ð6Þ

in the limit N/ ‘. In particular, we wish to distinguish
cases in which u ¼ limN/‘u

ðN Þ must be zero from those
in which u could be greater than zero. As discussed
above, we assume that m/ 0 asN/ ‘. Therefore, for u
to be greater than zero, the value of the sum in Equation
6 must grow with N.

For the remainder of this work, we adopt the
following simple model for the distribution of U in
our modified Moran model. We assume that

PU ðuÞ ¼
1� N �g if u ¼ 2
N �g if u ¼ Nc

0 otherwise;

8<
: ð7Þ

in which c is a constant between 0 and 1, and g $ 0. In
seeking a continuous-time limit process, we require that
G2,2 / 0 and this further restricts us to g. 0. In words,
most of the time (with probability 1 � N�g) the parent
has the usual number of Moran-model offspring, but
occasionally (with probability N�g) the parent and its
offspring replace a fraction c of the population. In the
usual Moran model, where PU(2) ¼ 1, coalescence
occurs on a timescale of 1/G2,2 ¼ N(N � 1)/2 steps.

Thus, if g . 2 we expect Nc-reproduction events to be
too infrequent to shift the ancestral process from
Kingman’s coalescent. In contrast, the parameter range
0, g # 2, in which large (U¼ Nc) reproduction events
occur at least as frequently as regular (U ¼ 2) re-
production events, will be of particular interest. The
model requires that Nc is an integer, and we assume
implicitly that this is true.

The constant c is a parameter of the limit process and
it has a clear biological interpretation. It is the scaled
family size, or the scaled number of offspring, of a large
reproduction event, measured as a fraction of the total
population. In comparison, work on general multiple-
mergers coalescent processes occurs in a more abstract
mathematical setting (Pitman 1999; Sagitov 1999;
Birkner et al. 2005). More easily interpreted models
include the power-law distribution function for family
sizes that yields the beta-coalescent (Schweinsberg

2003; Birkner et al. 2005) and the models of recurrent
selective sweeps (Gillespie 2000) that are best approx-
imated by a coalescent with simultaneous multiple
mergers (Durrett and Schweinsberg 2005). Note
that our assumption in Equation 7, that the family size of
large families is on the order of the population size, is
required to produce an ancestral process that is differ-
ent from Kingman’s coalescent given our modified
Moran model; see Möhle and Sagitov (2001, p. 1552).

We show in the appendix that five different limit
processes of our modified Moran model are possible as
N tends to infinity, depending on the value of g . 0.
These are summarized in Table 1. Consideration of li,x
alone uncovers three different behaviors in the limit.
If g , 2, the result is a multiple-mergers coalescent
process, because the rate of Nc-reproduction events is

TABLE 1

Five different possible ancestral limit processes for the modified Moran model

li;x Leading term of uðN Þ / u Case

i
x

� �
cxð1� cÞi�x 2c(1 – c)i�1m / 0 0 , g , 1

i
x

� �
cxð1� cÞi�x 2 11cð1� cÞi�1

� �
m/ 0 g ¼ 1

i
x

� �
cxð1� cÞi�x 2Ng–1m / u . 0 1 , g , 2

i

2

� �
2

21c2c
2 1

c2

21c2c
2ð1� cÞi�2

� �
if x ¼ 2

i

x

� �
c2

21c2c
xð1� cÞi�x if x. 2

8>>><
>>>:

2N
c2

21c2m/ u. 0 g ¼ 2

i

2

 !
c2 if x ¼ 2

0 if x. 2

8><
>: Nmc2 / u. 0 g. 2
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much greater than the rate of 2-reproduction events. In
this case, PU

*(Nc)/ 1 asN/ ‘, and the limit process is
of the type described by Pitman (1999) and Sagitov
(1999) with L ¼ dc, i.e., the d-function at the point c.
Again, note that our timescale differs from theirs by the
factor c2. If g ¼ 2, then the two types of reproduction
events occur on the same timescale, and PU

*(Nc)/ c2/
(21 c2) asN/‘. This corresponds to the case whereL
hasmass 2/(21 c2) at 0 andmass c2/(21 c2) at c. Note
that the mass at 0 affects only the rate of binary mergers,
which is the only possible type of merger when a 2-
reproduction event occurs. If g . 2, then PU

*(Nc) / 0
in the limit, and the ancestral limit process is Kingman’s
coalescent, as expected.

In the first case above (0 , g , 2), Nc-reproduction
events are responsible for all mergers in the limit
because PU

*ðNcÞ/ 1 and PU
*ð2Þ/ 0 as N / ‘. Our

consideration of mutation and genetic diversity sub-
divides 0 , g , 2 into three different cases. The key
point here is that, despite the fact that PU

*ð2Þ/ 0, these
infrequent 2-reproduction events can generate many
mutations in the ancestry of the sample if NPU

*ð2Þ/‘

asN /‘ (see Equation A4 in the appendix). In the first
two cases in Table 1, the rate of Nc-reproduction events
is too large (NPU

*ð2Þ,‘) and only a finite number of
mutations will occur before the sample reaches its
MRCA. The scaled mutation parameter becomes a con-
stant times m, and this will be so small that the predicted
level of genetic diversity is zero. In the third case, 1 ,

g , 2, multiple mergers can occur, but it is also reason-
able to expect some genetic variation to be observed.
The scaled mutation parameter is m times a strictly in-
creasing function of N, so u could be appreciable if the
population size is large enough. In the final two cases in
Table 1, the scaled mutation parameter is a linear func-
tion ofN, which is the case typically in population genetics.

Among the five possible limit processes, we suggest
that the case 1 , g , 2 might be a good null model for
many organisms, namely those with very skewed off-
spring number distributions and very large population
sizes. A large variance in offspring number leads to an
ancestral process of coalescence that includes multiple
mergers, while a very large population size is needed
because the mutation parameter u scales less than lin-
early with N. Specifically, u ¼ 2Ng�1m and 0, g � 1, 1,
so depending on the value of g, Nmight have to be very
large for the level of genetic variation to be appreciable.

Consider a sample of two DNA sequences at some
genetic locus, and let K be the number of mutations on
their gene genealogy. If mutations occur according to
the infinitely many sites model without recombination
(Watterson 1975), then every mutation results in a
polymorphic site or in a difference between the two
sequences at some site. For this limit process with 1 ,

g , 2, we have l2,2 ¼ c2, and E[TMRCA] ¼ 1/c2. Then,
since the rate of mutation is u/2 for each of the two
ancestral lines, we have E[K] ¼ u/c2 and

ProbfK ¼ kg ¼ u

u1c2

� �k c2

u1c2:

This agrees with intuition from the discrete model,
which says that the level of genetic variation in a sample
from a population with a larger value of c should be
smaller than the level of genetic variation in a sample
from a population with a smaller value of c, all other pa-
rameters being equal. Note that under the usual time scal-
ing for multiple-mergers coalescent processes (Pitman
1999; Sagitov 1999; Möhle and Sagitov 2001),
E[TMRCA]¼ 1 and by analogy with Kingman’s coalescent
the mutation parameter is defined to be u(N) ¼ 4Ng�1m/
c2, so that E[K] ¼ u.
Properties of multiple-mergers genealogies in simu-

lations: The level and pattern of variation in a sample
depends on the sample size n, themutation parameter u,
and the family-size parameter c. A program, written in
C, to simulate the ancestral process for the case 1, g,

2 is available from the authors upon request. The pro-
gram simulates the ancestry, or gene genealogy, of a
sample, including the tree relating the members of the
sample and all the branch lengths, or coalescent times.
It also implements the inference method described in
the next section.
Figure 2 shows estimates of the expected total length

of the gene genealogy, Ttot, which is the sum of the
lengths of all ancestral lines back to the MRCA, as c

ranges from 0.05 to 0.95. The result for our timescale is
given in Figure 2a, while Figure 2b shows the same
results when time is measured using the usual scaling
(Pitman 1999; Sagitov 1999). Figure 2 should be inter-
preted as a comparison of different populations, which
have the same values of N and g, but different values of
c. Under our timescale, of two populations that expe-
rience Nc-reproduction events with probability N�g per

Figure 2.—The expected total length of the
gene genealogy of a sample of size n ¼ 10, com-
puted as the average over 1 million simulation
replicates, as a function of c. (a) u ¼ 4N g�1m.
(b) u ¼ 4N g�1m=c2. a and b correspond to the
two ways of measuring time in the limit process
discussed in the text.
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time step, the population with the larger value of c will
have shorter gene genealogies. Under the usual time-
scale, in Figure 2b, the average total tree length increases
with c. This is because, as c increases to 1, every sample
will likely reach its MRCA at the first Nc-reproduction
event in the past, so that E[TMRCA] ¼ 1 under the usual
timescale, regardless of sample size, and E[Ttot] ¼ n.
The predictions about levels of polymorphism are the
same under both timescales due to the different de-
finitions of u.

It is also of interest to knowhowE[Ttot] depends on the
sample size n. Under Kingman’s coalescent, E ½Ttot� ¼
2
Pn�1

i¼1 1=i, so the dependence on n is logarithmic. The
weak dependence on nwhen n is large under Kingman’s
coalescent, and the associated ‘‘diminishing return’’ on
further sampling, has shaped discussions of sampling
strategies for the measurement of sequence polymor-
phism (Pluzhnikov and Donnelly 1996). Figure 3
compares the dependence of E[Ttot] on n in simulations
of the current model with 1, g, 2 for a range of values
of c. The logarithmic dependence under Kingman’s
coalescent is shown for reference (Figure 3, thick curve).
When c is small, the dependence on n is close to that
under Kingman’s coalescent, but becomes dramatically
different (linear) as c increases to 1. To emphasize the
dependence on n, rather than the effect of c that is
shown in Figure 2, the values of Ttot in Figure 3 are
normalized by the values at n ¼ 5 for each c.

The shapes of gene genealogies can also be very
different under the current model than under Kingman’s
coalescent. For example, when c is large, gene gene-
alogies will tend to be star shaped, with all ancestral
lines emanating from the MRCA. One way to measure
the shape of a gene genealogy is to compute the total
length of all branches that are ancestral to 1, 2, . . . ,n� 1
members of the sample. Let Ti be the sum of the lengths
of all branches in the gene genealogy that have i de-
scendants in the sample. The tests of Tajima (1989) and
Fu and Li (1993), which are often described as tests of

selective neutrality, in fact simply detect deviations from
the predictions of Kingman’s coalescent aboutTi, under
the additional assumption of the infinitely many sites
mutation (Watterson 1975).

Figure 4 shows the dependence of E[Ti] on c, esti-
mated from simulations for a sample of size n ¼ 4. The
values are given as fractions of the expected total tree
length E[Ttot], so that they sum to one for each value of
c. When c is small, the allocation to different kinds of
branches is similar to that under Kingman’s coalescent,
in which case E[T1]/E[Ttot] ¼ 0.55, E[T2]/E[Ttot] ¼
0.27, and E[T3]/E[Ttot] ¼ 0.18 when n ¼ 4. As c

grows, the genealogy becomes dominated by external
branches, and this is of course true for samples of any
size. For small samples it is possible to generate ana-
lytical predictions for E[Ti] or other quantities by enu-
merating all possible gene genealogies. The lines in
Figure 4 show the predictions for n ¼ 4 derived in the
appendix. Although Figure 4 implies that c needs to
be relatively large for the differences from Kingman’s
coalescent to become apparent, the application to data
below indicates a greater sensitivity toc for larger samples.

Application to Pacific oyster data: We used the pro-
gram described above as the basis for a method of in-
ferring u and c from samples of genetic data. As noted
already, Pacific oysters may have a population structure
in which many or most individuals leave few offspring,
or none at all, while others may even replace the entire
population if conditions are favorable (Hedgecock

1994). Our model is a simplified version of this, in
which reproduction events are nonoverlapping in time
and where large reproduction events are of a single type
(an individual replaces a fraction c of the population).
These Nc-reproduction events occur with probability
N�g at each reproduction event and, in basing our
method of inference on the program above, we also
assume that 1 , g , 2. Figures 2 and 4 imply that we
should be able to estimate u and c on the basis of
information about T1, T2, . . . ,Tn�1 (and/or Ttot). Note

Figure 3.—The expected total length of the gene geneal-
ogy (the average of 100,000 replicates) as a function of the
sample of size n and for five different values of c. To empha-
size the dependence on n, for each c the values are normal-
ized by the values at the smallest (leftmost point) sample
size, n ¼ 5. The thick solid line shows the predictions for
Kingman’s coalescent.

Figure 4.—The expected unfolded site frequencies as a
fraction of the total length of the gene genealogy for a sample
of size n ¼ 4, computed as the average over 1 million simula-
tion replicates, as a function of c.
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that, just as it is impossible to disentangle N and m in
Kingman’s coalescent without independent knowledge
of one or the other, we cannot estimate g, but only the
composite parameter u ¼ 2Ng�1m.

We use the data of Boom et al. (1994), which are the
result of a restriction-enzyme digest of mtDNA on a
sample of size n ¼ 141 individuals. These data were
previously analyzed under a conceptually related model
in which some fraction of a Wright–Fisher population
produced all the offspring every generation and the
other fraction produced no offspring at all (Wakeley

and Takahashi 2003). We adopt the same framework
for inference and fit the two parameters of ourmodel by
a computational maximum-likelihood method on the
total number of segregating sites S and the number of
singleton polymorphisms h1. Under the infinite-sites
mutation model, these are identical to the total number
of mutations on the gene genealogy and the total
number of mutations on the external branches of the
gene genealogy. Then, given a gene genealogy, S � h1

and h1 are independent and Poisson distributed with
parameters u(Ttot � T1)/2 and uT1/2, respectively. As
above, Ttot is the total branch length of the genealogy
and T1 is the total length of external branches. At each
point in a grid of values of u and c we estimated the log-
likelihood of the data as the average over a large number
of simulated genealogies.

The data are S ¼ 50 and h1 ¼ 31 in the sample of size
n¼ 141, and a contour plot of the log-likelihood surface
is shown in Figure 5. We estimated the surface by sim-
ulating 10,000 gene genealogies for each point in a grid
composed of 80 values of c and 100 values of u. Within

the constraint of this grid, there were two maximum-
likelihoodpoints,whoseapproximatepositions aremarked
with a single x in the figure. The points are adjacent
on the grid and differ only in their values of c, which
were 0.075 and 0.0775, while u ¼ 0.0308 at both points.
We estimated E[S] and E[h1] at these two points using
simulations and obtained average values S ¼ 53:1 and
h1 ¼ 31:7 at the point (c ¼ 0.075, u ¼ 0.0308) and
S ¼ 50:4 and h1 ¼ 30:5 at the point (c ¼ 0.0775, u ¼
0.0308). In contrast, Kingman’s coalescent, with its sin-
gle parameter u, cannot generate expected values close
to S ¼ 50 and h1 ¼ 31. For example, if we estimate u

using Watterson’s (1975) moment method, we obtain
û ¼ 50=

P140
i¼1 1=i � 9. Under Kingman’s coalescent, the

expected number of singletons is E[h1] ¼ u ¼ 9, which
is much smaller than the observed value h1 ¼ 31.

DISCUSSION

It is not knownwhat fraction of species conform to the
assumptions of Kingman’s coalescent. We have used
a simple model to show that the dynamics of small-
mutation-rate loci in large populations can display a
number of interesting behaviors, depending on the
distribution of offspring number among individuals. We
focused on one limit process in which gene genealogies
result fromamultiple-mergers coalescentprocess (Pitman
1999; Sagitov 1999), but still some genetic variation
should be observed if the population size is large
enough. This ancestral process may be appropriate
for many marine organisms (Hedgecock 1994) as it
predicts a less-than-linear dependence of heterozygosity
on actual population size and can account for the large
numbers of low-frequency polymorphisms (e.g., h1 above)
observed in some data. Even using a simple method
of inference it is possible to estimate the parameters of
the model from a sample of genetic data. The results
suggest that the ancestral process in the Pacific oyster is
a multiple-mergers coalescent in which a single indi-
vidual may replace a significant fraction (8% by our
estimate) of the population with its offspring.
Our results hold for a modified Moran model in

which there is a chance that the parent has a large
number of offspring. An important feature of this
model is that generations are overlapping. Many organ-
isms have overlapping generations, although we do not
claim that the details of our model are true for any
particular species. In contrast, most work in population
genetics is done under the Wright–Fisher model of
reproduction (Fisher 1930; Wright 1931), which is an
idealized model of nonoverlapping generations. Under
the standard assumptions, the Wright–Fisher model
and the Moran model have the same ancestral limit
process, and that is Kingman’s coalescent. Interestingly,
analysis of a modified Wright–Fisher model that is
comparable to our modified Moran model yields a dif-
ferent range of ancestral limit processes. Consider a

Figure 5.—The log-likelihood surface for the Pacific oyster
data of Boom et al. (1994), estimated over a grid of points for
c and u using simulations. Themaximum likelihood occurred
at two adjacent points, which are covered by a single x. Con-
tour lines are drawn every two log-likelihood units from the
maximum.
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Wright–Fisher-type model in which most generations
proceed according to the usual dynamics, but where
occasionally (with probability N�a each generation)
there is a single highly fecund individual. This special
individual has chance c of being the parent of each
individual in the next generation, while the other N� 1
individuals share the remaining fraction 1� c of repro-
duction events according to the usual Wright–Fisher
sampling process.

We show in the appendix that the range of ancestral
processes under this modified Wright–Fisher model is
similar, but not identical to those under our modified
Moran model. This is due to the fact that in the
modified Wright–Fisher model all individuals die and
are replaced by offspring every generation (and thus
all N have the potential to mutate), whereas in the
modifiedMoranmodel only a fraction of individuals are
replaced by offspring every time step. Consequently,
there is no range of a. 0 in themodifiedWright–Fisher
model equivalent to 0 , g # 1 in the modified Moran
model, where the population scaled mutation rate must
tend to zero as N / ‘. The behavior of the modified
Wright–Fisher model corresponds to that of the mod-
ified Moran model with g. 1 if a ¼ g � 1. When g . 2
and a. 1, the difference in opportunities for mutation
in the two models is perfectly compensated for by the
difference in probabilities of coalescence. Thus, consid-
eration of large variances in offspring number uncovers a
fundamental difference between models with overlap-
ping vs. models with nonoverlapping generations.

As with any idealization, there are probably many
aspects of our modified Moran model that would be
unrealistic for a given species. Among other things, one
might question whether the population size has been
constant over time, whether all genetic variation is
selectively neutral, whether the population is well
mixed, and whether the age distribution is close to what
our model would predict. Given the difference between
our model and the modified Wright–Fisher model dis-
cussed above, it would be risky to extend the well-known
robustness of Kingman’s coalescent (Möhle 1998, 1999)
to multiple-mergers coalescent processes. For example,
the model we considered looks superficially similar
to Wright–Fisher models with periodic, extreme bottle-
necks or with periodic selective sweeps. However, in both
these cases the limit process would include simultaneous
multiple mergers—see Durrett and Schweinsberg

(2005) for an analysis of periodic selective sweeps—-
rather than asynchronous multiple mergers (Sagitov
1999) as we have here.

Robustness results in population genetics are usually
described in terms of effective population size. This
term has been defined loosely to be the size of an ideal,
Wright–Fisher population that would have the same
‘‘rate of genetic drift’’ as the population under consid-
eration. The rate of genetic drift can be defined in
several different ways (Ewens 1982), but the essential

idea is that the dynamics of a complicated model can in
some cases be shown to be identical to those of a simpler
model via an effective population size alone. In other
cases, the dynamics of a more complicated model can-
not be reduced to those of a simpler model, and then
there is no effective population size. For example, the
well-known result that the effective size of a population
whose size fluctuates over time is equal to the harmonic
mean of the population sizes over time requires that the
fluctuations are not too large and that the average
population size does not change over time.

Sjödin et al. (2005) recently formalized the concept
of the coalescent effective population size, which they argue
should supplant all other definitions. The existence of a
coalescent effective size means that the ancestral pro-
cess for a sample from the population converges to
Kingman’s coalescent in the limit as the actual popula-
tion size tends to infinity, so that all aspects of genetic
variation in samples should conform to the predictions
of Kingman’s coalescent. In the limit process we apply to
the Pacific oyster data of Boom et al. (1994), in which we
have assumed 1 , g , 2, the ancestral process is dras-
tically different from Kingman’s coalescent, so the coa-
lescent effective size does not exist. Other definitions
of effective size are similarly inapplicable and uninfor-
mative because the dynamics of genetic diversity in the
population both forward and backward in time are in no
sense equivalent to those of the idealizedWright–Fisher
model. From the forward-time perspective, the presence
of the Nc-reproduction events would produce jumps in
allele frequencies that would invalidate the usual dif-
fusion approximation (Ewens 2004). ThemodifiedMoran
model and the modified Wright–Fisher model consid-
ered here have effective population sizes in the usual
sense only when g. 2 and a. 1 and the ancestral limit
process is Kingman’s coalescent.
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Árnason, E., 2004 Mitochondrial cytochrome b variation in the
high-fecundity Atlantic cod: trans-Atlantic clines and shallow
gene genealogy. Genetics 166: 1871–1885.

Birkner, M., J. Blath, M. Capaldo, A. Etheridge, M. Möhle et al.,
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APPENDIX

Ancestral limit processes with mutation: Here we consider the limits of Equation 4 and Equation 6 asN/‘, under
the assumption that the number of ancestral lines i is finite and treating the parameters c and g as constants, with 0,
c , 1 and g . 0. We rewrite Equation 4 and Equation 6 as

l
ðN Þ
i;x ¼

i

x

� �
c2
XN
u¼2

PU*ðuÞAN ðu; i; xÞ

uðN Þ ¼ 2mc2
XN
u¼2

PU*ðuÞBN ðu; iÞ;

in which we define the functions AN(u, i, x) ¼ (u � 2)x�2(N � u)i�x/(N � 2)i�2 and BN(u, i) ¼ (N � u)i�1/(u(N �
2)i�2), and where

PU*ðuÞ ¼

2N g � 2

2N g 1c2N 2 � cN � 2
if u ¼ 2

c2N 2 � cN

2N g 1c2N 2 � cN � 2
if u ¼ cN

0 otherwise

8>>>>><
>>>>>:

is obtained from Equations 5 and 7. We point out that we have not dealt explicitly with the fact that li,x(N) should be the
rescaled rate of an x-merger and nomutation, but wenote that the correctionwould simply be tomultiply li,x(N) by 11O(m).

We consider the limits of PU*(u), AN(u, i, x), and BN(u, i) as N / ‘. For PU*(u), depending on the value of g,

PU*ð2Þ/
0 if 0, g, 2

2

21c2 if g ¼ 2

1 if g. 2;

8><
>: ðA1Þ
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and of course PU
*ðcN Þ ¼ 1� PU

*ð2Þ. Next, we have AN(2, i, 2) ¼ 1, and AN(2, i, x) ¼ 0 for x . 2, while

AN ðcN ; i; xÞ ¼ ðcN � 2Þx�2ðN � cN Þi�x

ðN � 2Þi�2

¼ cx�2N x�2ð11Oð1=N ÞÞð1� cÞi�xN i�xð11Oð1=N ÞÞ
N i�2ð11Oð1=N ÞÞ

¼ cx�2ð1� cÞi�x 1Oð1=N Þ
/cx�2ð1� cÞi�x asN/‘:

Using these results for PU*(2) and AN(u, i, x), if x ¼ 2, then

l
ðN Þ
i;2 ¼

i

2

� �
c2ðPU*ð2ÞAN ð2; i; 2Þ1PU*ðcN ÞAN ðcN ; i; 2ÞÞ

¼
i

2

� �
c2 PU*ð2Þ1PU*ðcN ÞðN � cN Þi�2

ðN � 2Þi�2

� �

and

l
ðN Þ
i;2 /

i

2

� �
c2ð1� cÞi�2 if 0, g, 2

i

2

� �
2

21c2c
2 1

c2

21c2c
2ð1� cÞi�2

� �
if g ¼ 2

i

2

� �
c2 if g. 2:

8>>>>>>>><
>>>>>>>>:

ðA2Þ

If x . 2, then

l
ðN Þ
i;x ¼

i

x

� �
c2ðPU*ð2ÞAN ð2; i; xÞ1PU*ðcN ÞAN ðcN ; i; xÞÞ

¼
i

x

� �
c2PU*ðcN ÞðN � cN Þi�x

ðN � 2Þi�2

and

l
ðN Þ
i;x /

i

x

� �
cxð1� cÞi�x if 0, g, 2

i

x

� �
c2

21c2 c
xð1� cÞi�x if g ¼ 2

0 if g. 2:

8>>>>><
>>>>>: ðA3Þ

Equations A2 and A3 give the first column of Table 1.
Now consider BN(u, i) as N / ‘. We have the pair of equations

BN ð2; iÞ ¼
ðN � 2Þi�1

2ðN � 2Þi�2

¼ N � i

2
¼ N

2
1Oð1Þ;

BN ðcN ; iÞ ¼ ðN � cN Þi�1

cN ðN � 2Þi�2

¼ c�1ð1� cÞi�1 1Oð1=N Þ:

The scaled mutation parameter becomes

uðN Þ ¼ 2mc2 PU*ð2Þ
ðN � 2Þi�1

2ðN � 2Þi�2

1PU*ðcN Þ ðN � cN Þi�1

cN ðN � 2Þi�2

� �

¼ 2mc2 PU*ð2Þ
N

2
1Oð1Þ

� �
1PU*ðcN Þ ð1� cÞi�1

c
1Oð1=N Þ

� �� �
¼ mc2ðNPU*ð2Þ1Oð1ÞÞ:

ðA4Þ
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We assume that m/ 0 and N/ ‘, which means that u :¼ limN/‘u
ðN Þ can be nonzero only if NPU

*(2)/ ‘ as N/ ‘

and if we further assume that m } 1/(NPU
*ð2Þ). Therefore, to explore the full range of g, it is necessary to know the

rates at which PU
*(2) and PU

*(cN) approach their limits given in Equation A1. Analysis of the first line of Equation A4
reveals

uðN Þ ¼

2mcð1� cÞi�1ð11Oð1=N 1�gÞÞ if 0, g, 1

2mð11cð1� cÞi�1Þð11Oð1=N ÞÞ if g ¼ 1

2mN g�1ð11Oð1=N 2�gÞÞ if 1, g, 2

2mN
c2

21c2ð11Oð1=N ÞÞ if g ¼ 2

mNc2ð11Oðmaxð1=N ; 1=N g�2ÞÞÞ if g. 2;

8>>>>>>>><
>>>>>>>>:

ðA5Þ

which, together with assumptions about how m scales withN, gives column 2 of Table 1. It is interesting to note that, in
the first two cases above, u(N ) depends on the number of ancestral lines, i. When 0, g # 1, mutations on the different
lines are not independent because they occur at cN-reproduction events, where it is possible that several lines mutate
at once.

Expected lengths of i-branches: Here we derive the total length of all branches that have i¼ 1, 2, 3 descendants in a
sample of size four. Let qi,x be the probability of an x-merger among i ancestral lines given that a merger has occurred.
Thus,

qi;x ¼
li;xP
i
x¼2 li;x

ðA6Þ

and
Pi

x¼2 qi;x ¼ 1. With respect to the site frequencies, or the total length of branches in the ancestry of the sample
that have j¼ 1, 2, . . . , i� 1 descendants in the sample, there are only five possible gene genealogies of a sample of size
four, and these are defined by the series of events that takes the sample from the present time back to the MRCA.

Let pi1i2...ik be the probability of a gene genealogy in which a series of k mergers takes the sample back to its
MRCA, and where ij is equal to the number of ancestral lines present between the ( j � 1)st and the jth mergers. The
probabilities of the five possible gene genealogies of a sample of size four are pðaÞ432 ¼ q4;2q3;2q2;2=3; p

ðbÞ
432 ¼

2q4;2q3;2q2;2=3; p43 ¼ q4;2q3;3; p42 ¼ q4;3q2;2; and p4 ¼ q4;4. The first two are the two possible kinds of rooted binary
trees for a sample of size four, which differ in the number of tips at either side of the root: 2 and 2 in (a) vs. 3 and 1 in (b).

When there are i ancestral lines, the expected time back to the next merger is equal to 1=
Pi

x¼2 li;x . The structure of
the gene genealogy determines how many branches in the interval are ancestral to one, two, or three members of the
sample and thus would contribute to either T1, T2, or T3, respectively. For example, all the branches in the star tree,
which has probability p4, are included in T1. Considering each of the five possible trees, we have

E ½T1� ¼
4

l4;4 1 l4;3 1 l4;2
1

2 p
ðaÞ
432 1 p

ðbÞ
432 1 p43

� �
l3;3 1 l3;2

1
p
ðbÞ
432 1 p42
l2;2

;

E ½T2� ¼
p
ðaÞ
432 1 p

ðbÞ
432 1 p43

l3;3 1 l3;2
1

2pðaÞ432

l2;2
;

E ½T3� ¼
p
ðbÞ
432 1 p42
l2;2

;

which gives

E ½T1� ¼
4ðc3 � 7c2 1 14c� 9Þ
ð2c� 3Þð3c2 � 8c1 6Þ

E ½T2� ¼
6ð1� cÞ2

3c2 � 8c1 6

E ½T3� ¼
4ð1� cÞðc2 � 3c1 3Þ
ð2c� 3Þð3c2 � 8c1 6Þ:

The expected total length of the gene genealogy of a sample of size four, E[Ttot], is equal to the sum of these, and
Figure 4 plots E[Ti]/E[Ttot] for i ¼ 1, 2, 3.
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Overlapping vs. nonoverlapping generations: Here we compare the results for a sample of size two under the
modifiedMoranmodel to those under themodifiedWright–Fishermodel. We consider the probability of coalescence
G2,2 and the expected number of pairwise differences E[K].

For the modified Moran model, from Equation 2 and Equation 7 in the main text, we have

G2;2 ¼
E ½U ðU � 1Þ�
N ðN � 1Þ ¼ 2ð1� N �gÞ1cN 1�gðcN � 1Þ

N ðN � 1Þ

and this gives

G2;2 ¼

c2

N gð11Oð1=N ÞÞ if 0, g, 2

21c2

N 2 ð11Oð1=N ÞÞ if g ¼ 2

2

N 2ð11Oð1=N ÞÞ if g. 2:

8>>>>>><
>>>>>>:

ðA7Þ

Further, when m is small, and considering the different cases in which a mutation can occur, yields the following
recursion for the expected number of pairwise differences:

E ½K � ¼
XN
u¼2

PU ðuÞ 2m
ðu � 1Þðu � 2Þ
N ðN � 1Þ 1m

2ðu � 1Þ
N ðN � 1Þ1

2ðu � 1ÞðN � uÞ
N ðN � 1Þ

� �� �
1
XN
u¼2

PU ðuÞ 1� uðu � 1Þ
N ðN � 1Þ

� �
E ½K �:

Upon rearrangement, this gives

E ½K � ¼ 2mðN � 1Þ E ½U � 1�
E ½U ðU � 1Þ�:

Wenote that the limit condition u. 0 is identical to the condition limN/‘E ½K �. 0. Given the distribution in Equation
7 in the main text, this becomes

E ½K � ¼ 2mðN � 1Þ N g 1cN � 2

2N g 1c2N 2 � cN � 2
¼

2mc�1ð11Oð1=N 1�gÞÞ if 0, g, 1

2mð11cÞc�2ð11Oð1=N ÞÞ if g ¼ 1

2mN g�1c�2ð11Oð1=N 2�gÞÞ if 1, g, 2

2mN ð21c2Þ�1ð11Oð1=N ÞÞ if g ¼ 2

mN ð11Oðmaxð1=N ; 1=N g�2ÞÞÞ if g. 2:

8>>>>><
>>>>>:

ðA8Þ

The discrepancy between the first two cases above and the first two cases in Equation A5 is attributable to the fact that
mutations on different lines are not independent.

Compare these results to those for the modified Wright–Fisher model, in which all adults die each generation and
are replaced by offspring, all of which canmutate.We assume that with probabilityN�a each generation, where a. 0, a
single adult has probability c of being the parent of each individual in the next generation. If this happens, then each
of the other N � 1 adults has chance (1 � c)/(N � 1) of being the parent of each individual in the next generation.
With probability 1 � N�a each generation, the standard Wright–Fisher model holds, in which each adult has chance
1/N of being the parent of each individual in the next generation. Under this model,

G2;2 ¼ ð1� N �aÞ 1
N

1N �a c2 1
ð1� cÞ2
N � 1

� �
¼

c2

N að11Oð1=N 1�aÞÞ if 0,a, 1

11c2

N
ð11Oð1=N ÞÞ if a ¼ 1

1

N
ð11Oð1=N a�1ÞÞ if a. 1;

8>>>>>><
>>>>>>:

ðA9Þ

and we can compare this to Equation A7. Analysis of the expected number of differences between the two samples
when m is small, or E[K] ¼ 2m/G2,2, gives

E ½K � ¼
2mN ac�2ð11Oð1=N 1�aÞÞÞ if 0,a, 1

2mN ð11c2Þ�1ð11Oð1=N ÞÞ if a ¼ 1

2mN ð11Oð1=N a�1ÞÞ if a. 1:

8><
>: ðA10Þ
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This verifies that the limit process for the modified Wright–Fisher model is simpler than that of the modified Moran
model in the sense that EquationA10 contains no cases in which E[K]must tend to 0 ifm/ 0 asN/‘. One can check
that the limit process for themodifiedWright–Fisher model is a multiple-mergers process in the case 0, a# 1, rather
than a Kingman coalescent, by showing that limN/‘G3;3=G2;2 . 0 (Möhle and Sagitov 2001). Note that, similarly to
the case 1, g, 2 in themodifiedMoranmodel, it is necessary to assume that themutation rate scales less than linearly
with population size in the modified Wright–Fisher model when 0 , a , 1 if the model is to predict any genetic
variation.
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